JU	L 2	1 1993 U # 12	ENGI	NEERING	DATA	TRANSM	IITTAL		1 507	1 36	age 1 of	1		
2. To	: (Rec	eiving Orga	nization)		3.	From: (Origina	eting Organiza	tion)		ed EDT N				
		bution						Management	gement N/A					
5. Pr	5. Proj./Prog./Dept./Div.: Environmental 6. Cog. Engr.: Restoration Engineering C. A. Rowley							7. Purchase Order No.: N/A						
8. Or	riginato	r Remarks:					C. A. Row	ley	9. Equip	o./Compor A	ent No.:			
Do	ocume	nt for	release	/approva	1,				10. Sys	tem/Bldg.	/Facility:			
									N/	or Assm.	Dwa No			
11. F	Receive	Remarks:							N/	Α				
									13. Perr N/.	mit/Permit A	Applicati	on No.:		
									14. Req	uired Res	ponse Dat	te:		
15.									N/	·	1	<u>r</u>		
				1	JAIAIR	ANSMITTED			(F)	(G)	(H)	(1)		
(A) Item No.	(E) Document/Drawing No. (C) Sheet (D) Rev. (E) Title or Description of Data Transmitted					Impact Level	Reason for Trans- mittal	Origi- nator Dispo- stion	Receiv- er Dispo- sition					
1	WHC-	SD-EN-T	I-136		0			round Storage	4	1/2	1			
						Tank Clos	Tank Closures 910111273							
	-				, - · · ·			61						
ļ							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		,					
								CENTED						
<u> </u>							150	EDMC	1.5/ N.5/			· · ·		
							18	En 16	У́					
16.	L			<u> </u>			KEY	62650502 AT CT (
lm	pact Le	vel (F)		Reaso	n for Tran	smittal (G)			sposition ((H) & (I)				
1, :	2, 3, or	4 (see	1. Appro	val 4	. Review			1. Approved	•	4. Review	yed no/oo	mment		
	MRP 5	.43)	2. Releas 3. Inform		. Post-Re . Dist. (R	eceipt Acknow.		Approved w/comm Disapproved w/comm	nment 5. Reviewed w/comment					
(G)	(H)	17.	-		(:	SIGNATU See Impact Lev	RE/DISTRIBUTED FOR THE PROPERTY OF THE PROPERT				(G)	(H)		
Rea- son	Disp.	(J) Name	(K) Signature	(L) Da		(J) Name	(K) Signature	(L) Dat	te (M) M	ISIN Rea	I Dien		
1	1	Cog. Eng.	C. A. I		righton	5/2/4 H6-02	EDMC (2) 46-0	7.5	H4	-22 3			
1	1	Cog. Mgr.	R. C. I	ROOS	700	16-04	Informa	tion Release Ad	min. (2) H4-	-17 3			
		QA			<u> </u>		Central	Files (2)		L8	<u>-04 3</u>			
		Safety	_	<u></u>	· · · · · · · · · · · · · · · · · · ·		ERC			H6	<u>-07 3</u>			
1	7	Env.		1/ 01) 11	01 7/11/3								
1]]		Hunacek Watson F	ROL OF	1 Here	7/1/4								
18.		D. U.	Na C3017	19.	A Her	~ y 100-41	20.		21 DOF	APPROV	Al (if reg	uired)		
		1.	:			-		•		No				
Cio	ug b	Youley.	5-27-93					5/27/43		Approved				
Signat Origina	77	DT \mathcal{J}^-	Date	Authorized			Cognizant M	anager Date		Approved	w/comme	ents		
Origina	etor .			for Receivin	ng Urganiz	ation				Disapprov	ed w/com	ments		

Ž.,

	INSTRUCTIONS F	OR COMPLETION OF THE ENGINEERING DATA TRANSMITTAL
BLOCK		(USE BLACK INK OR TYPE)
(1)*	EDT	● Pre-assigned EDT number.
(2)	To: (Receiving Organization)	 Enter the individual's name, title of the organization, or entity (e.g., Distribution) that the EDT is being transmitted to.
(3)	From: (Originating Organization)	 Enter the title of the organization originating and transmitting the EDT.
(4)	Related EDT No.	Enter EDT numbers which relate to the data being transmitted.
(5)*	Proj./Prog./Dept./Div.	 Enter the Project/Program/Department/Division title or Project/Program acronym or Project Number, Work Order Number or Organization Code.
(6)*	Cognizant Engineer	 Enter the name of the individual identified as being responsible for coordinating disposition of the EDT.
(7)	Purchase Order No.	• Enter related Purchase Order (P.O.) Number, if available.
(8)*	Originator Remarks	 Enter special or additional comments concerning transmittal, or "Key" retrieval words may be entered.
(9)	Equipment/Component No.	 Enter equipment/component number of affected item, if appropriate.
(10)	System/Bidg./Facility	Enter appropriate system, building or facility number, if appropriate.
(11)	Receiver Remarks	Enter special or additional comments concerning transmittal.
(12)	Major Assm. Dwg. No.	Enter applicable drawing number of major assembly, if appropriate.
(13)	Permit/Permit Application No.	Enter applicable permit or permit application number, if appropriate.
(14)	Required Response Date	 Enter the date a response is required from individuals identified in Block 17 (Signature/Distribution).
(15)*	Data Transmitted	
	(A)* Item Number	 Enter sequential number, beginning with 1, of the information listed on EDT.
	(B)* Document/Drawing No.	Enter the unique identification number assigned to the document or drawing being transmitted.
	(C)* Sheet No.	• Enter the sheet number of the information being transmitted. If no sheet number, leave blank.
	(D)* Rev. No.	 Enter the revision number of the information being transmitted. If no revision number, leave blank.
	(E) Title or Description of Data Transmitted	 Enter the title of the document or drawing or a brief description of the subject if no title is identified.
	(F)* impact Level	 Enter the appropriate Impact Level (Block 15). Also, indicate the appropriate approvals for each item listed, i.e., SQ, ESQ, etc. Use NA for non-engineering documents.
	(G) Reason for Transmittal	• Enter the appropriate code to identify the purpose of the data transmittal (see Block 16).
	(H) Originator Disposition	• Enter the appropriate disposition code (see Block 16).
	(I) Receiver Disposition	• Enter the appropriate disposition code (see Block 16).
(16)	Кеу	 Number codes used in completion of Blocks 15 (G), (H), and (I), and 17 (G), (H) (Signature/Distribution).
(17)	Signature/Distribution	
	(G) Reason	• Enter the code of the reason for transmittal (Block 16).
	(H) Disposition	Enter the code for the disposition (Block 16).
	(J) Name	
	(K)* Signature	 Enter the signature of the individual completing the Disposition 17 (H) and the Transmittal. Obtain appropriate signature(s).
	(L)* Date	Enter date signature is obtained.
	(AA) + AACINI	 Enter MSIN. Note: If Distribution Sheet is used, show entire distribution (including that indicated on Page 1 of the EDT) on the Distribution Sheet.
(18)	Signature of EDT Originator	 Enter the signature and date of the individual originating the EDT (entered prior to transmittal to Receiving Organization). If the EDT originator is the cognizant engineer, sign both Blocks 17 and 18.
(19)	Authorized Representative for Receiving Organization	 Enter the signature and date of the individual identified by the Receiving Organization as authorized to approve disposition of the EDT and acceptance of the data transmitted, as applicable.
100:-		

DOE Approval • Enter DOE approval (if required) by letter number and indicate DOE action.

*Asterisk denote the required minimum items check by Configuration Documentation prior to release; these are the minimum release requirements.

release.)

• Enter the signature and date of the cognizant manager. (This signature is authorization for

(20)*

(21)*

Cognizant Manager

SUPPORTING DOCUMENT	•	1. Total Pages 350
2. Title 100-N Area Underground Storage Tank Closures	3. Number WHC-SD-EN-TI-1	4. Rev No.
182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 105-N-LFT 100-N-SS-27, 100-N-SS-28, soil excavation, sample collection APPROVED FOR PUBLIC RELEASE	6. Author Name: C. A. Rowl Signature	Es voley
7. Abstract This report describes the removal/characte underground storage tanks at the 100-N Area.	rization action	s concerning
8. PURPOSE AND USE OF DOCUMENT - This document was prepared to see within to U.S. Department of Energy of the contract of the used by to perform, to act, or interstate or k under U.S. Department of Energy of the contracts. This document which approved for public release until a sewed. PATENT STATUS - document copy, since the stratified in advance of patents and to form of work under contracts with the U.S. Department of Energy. This document not to be published on its copy of the them is a solvent of the published for use in a form of the patent of the published or its copy of the them is disseminated or use for purposes other than specific above before patent appoval to such release or use has been secured, upon request, from the Patent Counsel, U.S. Department of Energy Field Office, Richland, MA. DISCLAIMER - This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.	OFFICIAL BY W DATE J	UL 2 1 1993

9. Impact Level

Date Received:	INF	ORMATI	ON R	ELEAS	SE RE	QUEST		Reference: WHC-CM-3-4
		Complete	for all	Types of				
Speech or	urpose	[] Pefer	rence			ber (include re		
Presentation	heck	XII Techr	nical Re	port		SD-EN-TI-1	36, Rev. C)
	ly one	[] Thesi Dissertation			List a	ttachments.		
L3 Generally	ffix)	[] Henus	al		EDT	136130		
[] Abstract [] Visual Aid			nure/Fli Hare/Dat					
[] Visual Aid [] Speakers Bureau		[] Contr	rolled D			elease Required	5	
[] Poster Session [] Videotape		D Other	•		June	4, 1993		
		<u> </u>				Unclassified	Category	Impact
Title 100-N Area Undergrou	ind St	orage Tank	Clos	ures		UC- 630	outcesor y	Level 4
New or novel (patentable) subject	matter	? [] No	[]	Informat	ion rece	ived from other	rs in confider	nce, such as
Yes		Χ		propriet	ary data	, trade secrets	s, an d/or inve	entions?
If "Yes", has disclosure been sub company?	omitted	by WHC or other	er	X No	[] Yes	(Identify)		
[] No [] Yes Disclosure No(s	s).							
Copyrights? [x] No [] Yes				Trademar		· · · · · · · · · · · · · · · · · · ·		
If "Yes", has written permission		anted?		[X] No	[] Yes	(Identify)		
No Yes (Attach Permiss	ion)			<u> </u>				
Title of Conference or Meeting	·	Complete f	or Speed			Spannasina		
or conterence of needing				aroup or	SOCIETY	Sponsoring		
Date(s) of Conference or Meeting	City/	State		Wil	l proces	dings be	[] v	f 1
_					lished?		[] Yes	[] No
						al be handed	[] les	[] No
Title of Journal				out	?			
Titte of Jodinat								
		CHECK	I I ST FOE	SIGNATOR	EC			
Review Required per WHC-CM-3-4	Yes					cates Approval		
		_		me (printe		•••	nature	<u>Date</u>
Classification/Unclassified Controlled Nuclear Information	[]	[]						
Patent - General Counsel	Ŋ		S W	Berglin	, 7	Milke	when?	7/0/02
Legal - General Counsel	M			Berglir		- July	your _	4373
Applied Technology/Export	W	rı _	J. N.	bergin	<u>' </u>			/
Controlled Information or		F 3					_	
International Program	[]	<u>[3</u> _			D10	11 019	-14	() 0 () ()
WHC Program/Project	[X]		91. d.	Hatson	C. TUN	relevated s	Harac	5 1/5/93
Communications	[]	[} _			***********		-	U
RL Program/Project	[4]	[] _	in wind	Har A.	Cy Ha	arri's	allan C	Han 7/13/9
Publication Services	[X]	[]	M. R.	Knight.	Hilo	Maliant	M.J.	10.400
Other Program/Project	[]	M			C		touch	N.1800
Information conforms to all appli			The abo	ve informa	tion is	certified to b	e correct.	1.12.23
	Yes					LEASE ADMINIST		AL STAMP
References Available to Intended	[]		Stam			re release. R		
Audience	LX		reso	lution of	mandator	y comments.		
Transmit to DOE-HQ/Office of						A CONTRACTOR OF THE PARTY OF TH		
Scientific and Technical Information	M	Mack				FCE	2 .	
Author/Requestor (Printed/Signatu	r95)	Date				E		
O o FICE								
C. A. Rowley / Naug /K	owley	-507/93	_		a d	. NS	3	
Intended Audience		•			12		的方	
[] Internal [] Sponsor	[] Exte	ernal			A	Course of	3	
Responsible Manager (Printed/Sign	-X-				W.	a,7-15-7	Y	
vestoristore uninities. (LLJU160/2180	ature)ン	/ A // (yeate	1		**		•	

R. C. ROOS (7600-062 (08/94) WEF074

•

CONTENTS

1.0	INTRODUCTION
2.0	HISTORY
3.0	182-N-1-DT, 182-N-2-DT, AND 182-N-3-DT
4.0	105-N-LFT
5.0	100-N-SS-27 AND 100-N-SS-28
6.0	CLOSURE RECOMMENDATIONS: TANK 100-N-SS-28
7.0	SUMMARY
8.0	REFERENCES
APP	ENDIXES:
B CO	EMO DATED 5-18-93
FIG	URES:
1.	Locations of Underground Storage Tanks at the 100-N Area
2.	Sampling Locations at 182-N-1-DT, 182-N-2-DT, and 182-N-3-DT
3.	Sampling Locations at 105-N-LFT Tank
4.	Soil Excavation and Sample Collection at Tank 100-N-SS-27 (3.7 m [12 ft] Below Grade Surface)
5.	Soil Excavation and Sample Collection at Tank 100-N-SS-28 (0.46 m and 0.9 m [1.5 ft and 3 ft] Below Grade Surface) 10
6.	Soil Excavation and Sample Collection at Tank 100-N-SS-28 (3 m [10 ft] Below Grade Surface)
7.	Soil Excavation and Sample Collection at Tank 100-N-SS-28 (10.9 cm [36 ft] Below Grade Surface
8.	Soil Excavation and Sample Collection at Tank 100-N-SS-28 (~12.2, ~14.3, and ~16.7 m [~40, ~47, and ~55 ft])
TAB	LES:
1.	Tank Identification
2.	Sample Analyses Results

1.0 INTRODUCTION

This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area (Figure 1). Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

2.0 HISTORY

Tanks 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27 are located in the 100-N Area and were temporarily taken out of service in August 1990. Tank 100-N-SS-28 was removed on July 17, 1991. The single-shell tanks were constructed of carbon steel and varied in size from 11,356 to 56,781 L $(3,000\ to\ 15,000\ gal)$. All tanks contained diesel fuel with the exception of Tank 100-N-SS-27, which contained unleaded gasoline. The tanks varied in age from $11\ to\ 30\ years\ at\ time\ of\ removal\ (Table\ 1)$.

Advance notification for closure of UST 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27 was given in accordance with Chapter 40 Code of Federal Regulations (CFR) 280/281. This 30-day advance notification was given to the State of Washington Department of Ecology (Ecology) on September 20, 1990 (Correspondence No. 9004172). Advance notification for Tank 100-N-SS-28 was given to Ecology on June 13, 1991 (Correspondence No. 9102476) in accordance with Washington Administrative Code (WAC) 173-360-385.

Notice of Permanent Closure for UST 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27 was given to Ecology on July 16, 1991 (Correspondence No. 9103422), and Notice of Permanent Closure for UST 100-N-SS-28 was given on June 13, 1991 (Correspondence No. 9102476) (See Appendix B).

3.0 182-N-1-DT, 182-N-2-DT, AND 182-N-3-DT

Tanks 182-N-1-DT, 182-N-2-DT, and 182-N-3-DT were removed on November 30, 1990. It was noted in the field log book (WHC 1992a) that these tanks were in excellent condition with no significant rust or dents. A slight diesel odor, however, was noticed in the tank excavation area. Further investigation by the site safety officer (SSO) and the field team leader (FTL) revealed no levels of organic vapor above background detected with HNU meter (a tradename of HNU Systems, Inc.). It was suggested that the odor was probably coming from the valve caissons still in place. Samples were collected for each respective tank and sent offsite for laboratory analysis (Figure 2). The results of these samples were below detection levels.

. -

			_	
Tank	Location	Contents	Size*	Date Removed
182-N-1-DT	100-N	Diesel Fuel	15,000	Nov. 30, 1990
182-N-2-DT	100-N	Diesel Fuel	15,000	Nov. 30, 1990
182-N-3-DT	100-N	Diesel Fuel	15,000	Nov. 30, 1990
105-N-LFT	100-N	Diesel Fuel	5,000	Dec. 7, 1990
100-N-SS-27	100-N	Unleaded gasoline	3,000	Dec. 18, 1990
100-N-SS-28	100-N	Diesel Fuel	2,000	July 17, 1990**

Table 1. Tank Identification.

After the valve caissons had been removed, further site characterization continued on March 5, 1991. The soil was noted as looking dark and stained below the valves. Samples were collected from the discolored soils in all three caisson locations. Analysis of these samples revealed elevated levels of petroleum hydrocarbons. On September 14, 1991, further remediation of contaminated soil under valve caissons was attempted. It was determined that the contamination extended below and beyond several asbestos-wrapped pipes that prevented access with the backhoe. Work was delayed until the pipes could be removed for complete excavation.

On March 26, 1992, the asbestos-wrapped pipes had been removed and sampling activities were continued. Soil was excavated to a depth of 51 to 63 cm (20 to 25 in.) in each caisson location, and samples were taken. The FTL noted in the field log book (WHC 1991) that all three sample points were screened with an OVM meter (a pending tradename of Olympus Corporation) and were less than detectable at the point of collection. Results from sample analysis were below action levels. For sample summary, refer to Table 2.

4.0 105-N-LFT

Tank 105-N-LFT was removed on December 7, 1990. The tank was surveyed and determined to be radiologically contaminated. The outer surface of the tank measured up to 20,000 counts per minute (cpm) on a Geiger-Mueller meter (GM). Underground piping and cables prevented proper sloping of the excavation to allow personnel to enter. Therefore, samples were collected from the bucket of the backhoe. Four locations were sampled within the excavation. Radiological contamination levels of the samples measured between 20,000 to 50,000 cpm. Radiological contamination of samples prevented laboratory analysis before holding times expired.

On March 30, 1992, resampling activities were implemented (Figure 3). The tank site was excavated to 3.9 m (13 ft) below ground surface. At this point, plastic markers used to identify the final depth of original sampling

^{*} Denotes volume in gallons.

^{**} This tank last held unleaded gasoline for approximately 1 year prior to closure.

Figure 2. Sampling Locations at 182-N-1-DT, 182-N-2-DT and 182-N-3-DT

RCR\031293-A

Caissons ~ 25 in. Below Grade Surface

Sample Analyses Results.

(Sheet 1 of 2)

SAMPLE						TPH	TPH	TPH
NUMBER	LOCATION	BENZENE	ETHYLBENZENE	TOLUENE	XYLENE	GASOLINE	DIESEL	OTHER
N-101	182-N-1-DT	U	U	U	U	NA	NA	NA
N-102	182-N-1-DT	U	U	U	υ	NA	NA	NA
N-103	182-N-1-DT	U	U	U	υĮ	NA	NA	NA
N-104	182-N-1-DT	U	U	υ	U	NA	NA	NA
N-105	182-N-1-DT	υ	U	υ	U	NA	NA	NA
N-106	182-N-1-DT	υĺ	U	บ	U	NA	NA	NA
N-107	182-N-1-DT	U	U	υļ	υ	NA	NA	NA
N-108	182-N-1-DT	υl	U	U	U	NA	NA	NA
N-109	182-N-2-DT	U	U	ט	U	NA	NA	NA
N-110	182-N-2-DT	u	U	U	υį	NA	NA	NA
N-111	182-N-2-DT	υ	U	υ	υ	, NA	NA	NA
N-112	182-N-2-DT	υ	U	υ	U	NA	NA	NA
N-113	182-N-2-DT	U	U	U	U	NA	NA	NA
N-114	182-N-2-DT	υ	U	U	U	NA NA	NA	NA
N-115	182-N-2-DT	υ	U	U	U	NA	NA	ŅΑ
N-116	182-N-2-DT	υl	U	บ	U	NA	NA	NA
N-117	182-N-3-DT	U	U	U	U	NA	NA	NA
N-118	182-N-3-DT	U	U	บ	U	NA	NA	NA
N-119	182-N-3-DT	U	U	U	Ü	NA	NA	NA
N-120	182-N-3-DT	υ	U	U	U	NA NA	NA	NA
N-121	182-N-3-DT	U	U	U	U	NA	NA	NA
N-122	182-N-3-DT	U	U	U	U	NA	NA	NA
N-123	182-N-3-DT	U	U	U	U	NA	NA	NA
N-124	182-N-3-DT	U	Ü	U	U	NA	NA	NA
N-125	182-N-3-DT	U	U	U	U	NA NA	NA	NA
N-126	182-N-3-DT	U	U	U	υ	NA	NA	NA
N-127*	182-N-3-DT		U	υ	U	NA	NA	NA "
MK-103	(C) 182-N-1-DT		NA	NA	NA	NA	NA	570 mg/kg
MK-102	(C) 182-N-2-DT		NA	i	NA	NA	NA	29,480 mg/kg
MK-101	(C) 182-N-3-DT		NA NA		NA.	NA	NA	23,660 mg/kg
MK-105	(C) 182-N-3-DT		NA		NA NA	NA.	NA	125,920 mg/kg
MK-104*	(C) 182-N-3-DT		NA	4	NA	NA	NA	<10U mg/kg
B01GM3	(C) 182-N-1-DT	U	U	(U	U	21.3 mg/kg	59.4 mg/kg
B01GM1	(C) 182-N-2-DT	U	U	,	U	U	63 mg/kg	149 mg/kg
B01GM2	(C) 182-N-2-DT		U		U	U	14 mg/kg	110 mg/kg
B01GM0	(C) 182-N-3-DT	·l u	U	U	U	U	U	18.2 mg/kg

^{* -} DENOTES TRIP/EQUIPMENT BLANK

⁽C) - DENOTES CAISSON NA - NOT ANALYZED

U - COUMPOUND WAS ANALYZED FOR BUT NOT DETECTED.

Sample Analyses Results. (Sheet

OAMBIE I	-					TPH	TPH	TPH
SAMPLE NUMBER	LOCATION	BENZENE	ETHYLBENZENE	TOLUENE	XYLENE	GASOLINE	DIESEL	OTHER
B01GM4	105-N-LFT	U	U	22 ug/kg	U	U	U	7 mg/kg
B01GM5	105-N-LFT	υl	υ	17.2 ug/kg	U	U	U	24.2 mg/kg
B01GM6	105-N-LFT	υ	υİ	14 ug/kg	υj	U	υĮ	63.6 mg/kg
B01GM7	105-N-LFT	υİ	U	υ	U	NA	NA	33 mg/kg
B01GM8	105-N-LFT	∣ uÌ	υ	13 ug/kg	U	U	U	15.3 mg/kg
B01GM9*	105-N-LFT	u	u	30 ug/kg	U	U	U	2.2 mg/kg
27-101*	100-N-SS-27	u	U	υ	U	NA	NA	NA
27-102	100-N-SS-27	U	υ	U	U	NA	NA	NA
27-103	100-N-SS-27	υ	U	U	U	NA	NA	NA
27-104	100-N-SS-27	u	U	U	13 mg/kg	NA	NA	NA
27-105	100-N-SS-27	u	U	U	17 mg/kg	NA	NA	NA
27-106	100-N-SS-27	υ	U	U	U	NA	NA	NA
B00ZN6	100-N-SS-28	l ul	U	U	U	NA	50 mg/kg	NA
B00ZN7	100-N-SS-28	u	U	U	1 mg/kg	NA	240 mg/kg	NA
B00ZN8*	100-N-SS-28	NA	NA	NA	NA	NA	NA	NA
B00ZN9*	100-N-SS-28	NA	NA	NA	NA	NA	NA	NA
B00ZP0	100-N-SS-28	l u	U	U	U	NA	U	NA
B00ZP1	100-N-SS-28	2 mg/kg	10 mg/kg	350 mg/kg	130 mg/kg		2800 mg/kg	NA
B00ZP2	100-N-SS-28	1.8 mg/kg	11 mg/kg	43 mg/kg	540 mg/kg	NA	200 mg/kg	NA
B00ZP3	100-N-SS-28	4.5 mg/kg	32 mg/kg	100 mg/kg	1,800 mg/kg	NA	11 ug/kg	NA
B00ZP4	100-N-SS-28	2.7 mg/kg	23 mg/kg	94 mg/kg	1,600 mg/kg	NA	10 ug/kg	NA
B00ZP5*	100-N-SS-28	U	U	11 ug/kg	U	NA	NA.	NA
B00ZP6*	100-N-SS-28	NA	NA	1 1	NA	NA		NA U
B06D35*	100-N-SS-28	NA	NA		NA	NA		1 1
B06D36	100-N-SS-28	U	U	J. J.	U	l U	435 mg/kg	(K) 2975 mg/kg
B06D37	100-N-SS-28	u u	U	,	U			(K) 3085 mg/kg
BO76C4	100-N-SS-28	u u	U		U	Na contract of the contract of		
BO76C5	100-N-SS-28	1	U	1	U	l.	E .	
BO76C6	100-N-SS-28	i .	U		U	1	L	
B076C7*	100-N-SS-28		U	_	U	NA NA		
BO76C8*	100-N-SS-28		ľ	· -	Ü	1	· -	1
BO76C9*	100-N-SS-28	i i			U		1	1
B076D0	100-N-SS-28	s u	U	U	U U	NA	L U	

^{* -} DENOTES TRIP/EQUIPMENT BLANK

⁽K) - DENOTES KEROSENE

NA - NOT ANALYZED

U - COMPOUND WAS ANALYZED FOR BUT NOT DETECTED.

Figure 3. Sampling Locations at 105-N-LFT Tank.

B01GM9 - Clean Blank

X Sample Location (Sample Depth ∼ 13 ft Below Grade Surface) N. N.

RCR\031293-B

excavation were located. Samples were again taken from the bucket of the backhoe. No indication of tank leakage or petroleum contamination were found by the FTL at the time of tank removal. Analytical results from samples were below action levels (See Table 2).

5.0 100-N-SS-27 AND 100-N-SS-28

Tank 100-N-SS-27 was taken out of service on June 22, 1990 because of a failed tightness test conducted the day before. Twenty-four-hour notification was made to the Department of Energy (DOE) Richland Operations Office (RL) and Ecology per 40 CFR 280.61, and an Event Fact Sheet (#D&D/100-10-90) was prepared as well. Tank excavation was initiated on December 13, 1990, in accordance with 40 CFR 280.71. Immediately following tank removal on December 18, 1990, soil sampling was implemented. Field screening procedures consisted of collecting approximately 1/2 cup of soil, placing the soil in a plastic bag, and sealing by twisting the top, including as much air as possible. plastic bag was then shaken for approximately 10 seconds and the OVM probe was inserted in the bag for a reading. This procedure will be referred to as the OVM bag technique. Field screening using the OVM bag technique revealed organic vapor concentrations greater than 200 ppm in the south end of the tank impression. Additional field screening between 100-N-SS-27 and the sister tank (100-N-SS-28), which were about 2.7 m (9 ft) apart, showed vapor concentrations up to 350 ppm. Tank 100-N-SS-27 was noted to be in very good condition with no observable holes; however, the discovery of petroleum product in the excavation initiated an Unusual Occurrence Report (RL-WHC-WHC600EM-1990-0337). It was believed at that time that the contamination was from occasional overfilling of the tanks and a reported release of 337 L (89 gal) of gasoline on January 18, 1988 (Unusual Occurrence WHC-00-88-004-R, D&E0-1). The gravel and porous backfill surrounding the tanks may have created a natural pathway for surface spills. Samples were collected for offsite laboratory analysis (Figure 4). Analytical results from soil sampling indicate that the contaminated soil from the tank excavation site is well above cleanup levels set by the WAC 173-340-745 codes. Therefore, continued cleanup action was determined to be necessary.

On January 11, 1990, excavation of contaminated soil resumed. An additional 0.6 m (2 ft) of soil was removed, making the total depth about 4.3 m (14 ft), before reaching the excavation limit of the backhoe. Field screening using the OVM bag technique revealed elevated levels of volatile organic vapors ranging from 200 ppm to 350 ppm. There was no indication that the lower limit of contamination had been reached. The contamination was believed to extend south under the neighboring tank, 100-N-SS-28. No samples were collected at this time for laboratory analysis. It was noted in the 45-day report (Correspondence No. 910299) dated January 31, 1992, that complete cleanup would require excavation/removal of Tank 100-N-SS-28. The report also stated that Tank 100-N-SS-28 would be removed within the next three years, at which time this entire project would be cleaned up or would be included in the 100-NM-1 Operable Unit remediation plan.

On July 16, 1991, removal and remediation activities of UST 100-N-SS-28 were implemented under WAC 173-360. Soil was excavated from around the tank and background samples were taken (Figure 5). The tank was removed the

Figure 4.

following day. Visual inspection revealed the tank to be in very good condition with no holes or damage that would compromise the integrity of the tank. However, the bottom half of the tank was somewhat dirty, indicating that it was in contact with liquid. The excavated area also looked wet in the centerline of the pit. Additional investigation showed a loose pipe connection on the delivery line leading from the tank to the pump island. An eroded area of soil directly underneath the loose connection was observed. clay layer of saturated soil 15 to 30 cm (6 to 12 in.) deep at the bottom of the excavation appeared saturated with petroleum product. Approximately 2.7 m³ (3 yd³) of this soil was removed and packaged into barrels for disposal. Samples were collected at this time (Figure 6). Another Unusual Occurrence Report was completed on July 17, 1991, (RL--WHC-NREACTOR-1991-1030). Analytical results verified the soil to be contaminated with petroleum product. Maximum levels of toluene were 100 mg/kg and xylene 1800 mg/kg (See Table 2 for sample analyses results and Appendix C for Unusual Occurrence Reports).

Excavation of 100-N-SS-28 tank site resumed on September 14, 1991, to remove the contaminated soil. Backhoe limitations prevented excavating deeper than 7.6 m (25 ft) below grade surface (BGS). Using the bag technique, OVM readings were approximately 312 ppm. There was no indication that the extent of the contamination plume had been determined. Work was abandoned at this time pending further evaluation. Excavation was continued on April 29, 1992. A bench for the backhoe was excavated 1.5 m (5 ft) BGS in an attempt to remove the remaining contaminated soil. At 10 m (33 ft) BGS, the OVM bag technique was utilized. Readings of 440 ppm were detected in the head space of the bag. Backhoe limitations were once again encountered at 10.0 m (36 ft) BGS, at which point OVM bag readings were 760 ppm. Samples were collected for offsite laboratory analysis (Figure 7). These sample results confirmed petroleum product in the soil. Maximum Levels were toluene, 4.7 mg/kg; diesel, 1000 mg/kg; and kerosene, 3085 mg/kg (See Table 2).

On September 9, 1992, borehole sampling was implemented. The borehole was positioned over the previous excavation area and soil borings were collected to assess remaining contamination in the soil. The borehole started at ground level, drilling through the backfill, and was to extend 1.5 m (5 ft) below the lowest point of contamination detected by field instruments, or a maximum of 16.8 m (55 ft) BGS. Sample collection began near contact between clean fill and native soil, which was approximately 11 m (36 ft) BGS. Samples were collected from the borehole cuttings at approximately 12.2, 14.3, and 16.8 m (~40, 47, and 55 ft) and sent offsite for analysis (Figure 8). Analytical results from these samples were less than detectable (See Table 2). As the borehole was abandoned, three vapor probes were installed at approximately 6.1, 10.1, and 12.5 m (~20, 33, and 41 ft) depths. Field screening analysis of vapors through these probes have been below detection levels.

During the most recent excavation of this tank site (April 29, 1992), petroleum product was present in the soil. The lack of contamination found during soil boring activity could be a result of volatilization and biodegradation of the petroleum contaminants. It is also possible that the borehole did not intersect the remaining contamination.

Groundwater in the vicinity of the excavation is at approximately 18.2 m (60 ft). Four groundwater wells are located near the old 100-N fuel station (Tanks 100-N-SS-27/100-N-SS-28). These wells are 199-N-54, 199-N-55, 199-N-

Figure 8. Soil Excavation and Sample Collection at Tank 100-N-SS-28 (~12.2, ~14.3, and ~16.7 m [~40, ~47, and ~55 ft]).

56, and 199-N-57 (See Figure 1). They have been monitored for total petroleum hydrocarbons (TPH) and for benzene, toluene, M+P-xylene, and O-xylene (BTEX) from 1988 to present. Records back to 1988 indicate that no organic carbons (other than chloroform) have been detected in any of these wells.

6.0 CLOSURE RECOMMENDATIONS: TANK 100-N-SS-28

The WAC 173-340 "Model Toxic Control Act--Cleanup" and WAC 173-360 "Underground Storage Tank Regulations" are the established guidelines. These guidelines specify the means and degree for any corrective/cleanup action. If contaminated soil is found in contact with the groundwater or if soil contamination appears to extend below the lowest soil sampling depth, testing shall include the installation of groundwater monitoring wells to test for the presence of possible groundwater contamination. The minimum testing will be for BTEX and TPH constituents. Based upon these guidelines, recommendations of Site Remediation Management (SRM) are as follows:

Option 1: Excavate the area in question using an excavator capable of reaching depths of at least 12 m (40 ft).

- (a) If contamination is not present after excavating to 40 ft BGS, SRM will consider the site to be clean from petroleum product.
- (b) If contamination is determined to be present, excavation will continue until contaminated soils are removed, or Option 2 will be used.

Option 2: Install monitoring wells as required by the regulations. Because there are some wells already in close proximity, a compromise could possibly be reached with the State of Washington concerning the number of wells needed.

7.0 SUMMARY

This document was created in an effort to summarize the remediation/characterization activities concerning USTs at 100-N Area and to compile supporting documentation. The 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 105-N-LFT UST's are considered clean closed (Appendix A). The 100-N-SS-27 and 100-N-SS-28 UST site are pending a preferred alternative decision for clean closure. Tables have been created summarizing analytical results. Maps and figures of removal sites and sample locations are included. Copies of all official correspondence letters are contained in Appendix B. Unusual Occurrence Reports can be found in Appendix C, and validated sample documentation from the offsite laboratories is included in Appendix D.

8.0 REFERENCES

- 40 CFR 280, 1992, "Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks (UST)," Code of Federal Regulations, as amended.
- 40 CFR 281, 1992, "Approval of State Underground Storage Tank Programs," Code of Federal Regulations, as amended.
- WAC 173-340, 1990, "The Model Toxics Control Act Cleanup Regulations," Code of Federal Regulations, as amended.
- WAC 173-360, 1990, "Underground Storage Tank Regulations," Washington Administrative Code, as amended.
- WHC, 1991, Field Log Book, "Underground Storage Tank Investigation," EFL-1009, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1992a, Field Log Book, "Underground Storage Characterization and Remediation," WHC-N-349, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1992b, Field Log Book, "100-N Gas Station Leaking Underground Storage Tank Investigation," EFL-1044, Westinghouse Hanford Company, Richland, Washington.

APPENDIX A
MEMO DATED MAY 18, 1993

From:

Site Remediation Management Section

81353-93-027

Phone: Date:

6-9218 H6-04 May 18, 1993

Subject:

UST 182-N AND 105-N

To:

G. S. Hunacek

X0 - 41

H6-04

cc: C. A. Rowley D. J. Watson

X0-41

RCR File/LB

Regarding Underground Storage Tanks 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, AND 105-N-LFT. I was present during removal of these UST's and performed the original site assessment. I have reviewed the sample data from the removal and sampling activities.

Tank 105-N-LFT was not contaminated with petroleum product and is considered clean.

1500 5

Tanks 182-N-1,2,3-DT were not contaminated with petroleum products. There was some incidental contamination from the valves and piping which has been removed and is considered clean.

R. C. Roos Manager

car

APPENDIX B CORRESPONDENCE

:

CONTENTS

ŧ

Advance Notification for Closure of Underground Storage Tanks at the Hanford Site (9004172)	•				•	•					•	B-1
Information and Notifications for Underground Storage Tanks at the Hanford Site (9103422)		•	•	•	•	•	•	•	•	•	•	B-5
Forty-Five Day Report for Underground Storage Tank 100-N-SS-27 (9100299)			•	•	•	•		•	•			B-9
Underground Storage Tank 100N-SS-28 Closure (9155942D)		•	•	•	•	•		•		•	•	B-17
Permanent Closure of Underground Storage Fank 100N-SS-28 (9102476)	•							•				B-27

WHC-SD-EN-TI-136, Rev. 0 CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Addressee

Correspondence No.

R. D. Izatt

Timothy L. Nord

9004172

Subject: ADVANCE NOTIFICATION FOR CLOSURE OF UNDERGROUND STORAGE TANKS AT THE HANFORD SITE

INTERNAL DISTRIBUTION

Approval	Date	Nаme	Location	w/att
		Correspondence Control	A3-01.*	. X
		M. R. Adams R. J. Bliss	H4-55* B3-04	X
		L. C. Brown G. D. Carpenter	H4-51 H4-15*	X X
		R. A. Evanhoff K. A. Gano	GR-10* X0-21*	X X X X X X
	•	C. J. Geier E. M. Greager	H4-57 L6-60*	Χ
		R. P. Henckel K. L. Hoewing M. C. Hughes	H4-55* B3-06	X X X
		G. S. Hunacek K. N. Jordan	R1-15 X0-41* B2-15*	X X X
		R. E. Lerch (assignee) M. A. Mihalic	B2-35 R1-15*	х
		M. R. Morton R. J. Pyzel	R2-77* X0-42*	X X X
		R. L. Shuck D. E. Simpson	S4-67* B3-51	X X X X X
		D. R. Speer G. E. Van Sickle	R2-77* R1-15	X X
		B. L. Vedder D. J. Watson B. D. Wojtacok	B2-19* X0-41*	X
	DISTRIBUTION	R. D. Wojtasek EDMC	B2-15 H4-22	X X

54-6000-117(EF) WEF008 Correspondence Distribution Coversheet

Department of Energy

Richland Operations Office P.O. Box 550 Richland, Washington 99352

Incoming 9004172

90-ER8-117

SEP 2 0 1990

RECEIVE OCT-4000 OCKNOTUS

Mr. Timothy L. Nord Hanford Project Manager State of Washington Department of Ecology Mail Stop PV-11 Olympia, Washington 98504-8711

Dear Mr. Nord:

ADVANCE NOTIFICATION FOR CLOSURE OF UNDERGROUND STORAGE TANKS AT THE HANFORD SITE

Enclosed is a listing of the underground storage tanks (UST) that are being planned for removal (closure) at the Hanford Site. This notification is given in accordance with 40 CFR 280/281 to provide a 30-day advance notification prior to their removal.

Tanks 105-N LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27 are located at the 100-N Area (N Reactor) and were temporarily taken out of service in August 1990. They are single wall tanks constructed of carbon steel and vary in size from 3,000 to 15,000 gallons. They vary in age from 11 to 30 years. All the tanks contained diesel fuel except 100-N-SS-27 which contained unleaded gasoline. Due to the complexity of the site, the piping associated with these tanks (approximately 1,200 linear feet of 2-inch and 4-inch diameter) will be pressure tested, capped, and left in place to be remediated when the entire site is decommissioned/remediated. The actual removal of these tanks is currently scheduled to begin in mid-October.

Tanks 3000-1, 3000-2, 3000-3, and 3000-4 are located in the 3000 area and were temporarily taken out of service in February of 1990. They are also single wall tanks constructed of carbon steel and are each approximately 12,000 gallons in size. They are all approximately 40 years old and contained either gasoline (both leaded and unleaded) or diesel fuel. The removal of these tanks is scheduled to begin in December and be completed prior to February. Their actual removal dates may vary dependent upon winter weather conditions. Concurrent with the removal of these tanks, tank 325 will also be removed. This tank was discovered on site in 1989. Advance notification for closure of tank 325 was given in Mr. Leo Little's letter to Mr. Tom Lufkin of June 25, 1990, "Information and notifications for underground storage tanks at the Hanford Site." Tank 325 was previously used to store emergency diesel generator fuel. Although considered exempt from current regulations, it will be removed under guidance of 40 GFR 280/281. The tank is approximately 550 gallons in size and is located in the Hanford 300 Area.

Incoming 9004172

Mr. Timothy L. Nord

-2-

SEP 2 9 1990

Site assessments and sampling of the tanks will be performed as part of each tank closure. The Washington State Department of Ecology will be notified of any unusual circumstances in accordance with the regulations. Additional USTs are planned for removal in early 1991, but have not yet been scheduled. Additional notification will be made prior to their removal. When the closures are complete, revised notification forms will be forwarded to you.

If you have any questions or require additional information, please call Mr. P. M. Pak at (509) 376-4798.

Sincerely,

àtt. Director

Environmental Restoration Division

ERD: PMP

Enclosure

cc w/encl:

W. H. Bodily, KEH P. T. Day, EPA R. E. Lerch, WHC

T. B. Veneziano, WHC

Incoming 9004172

ENCLOSURE

UNDERGROUND STORAGE TANKS PLANNED FOR REMOVAL/CLOSURE DURING FY 1991

Tank #	Location	Contents	Size (Gallons)	Date Removed From Service	Scheduled Removal
105-N-LFT	100-N	Diesel Fuel	5,000	Aug. 1990	mid-October 1990
182-N-1-DT	100-N	Diesel Fuel	15,000	Aug. 1990	mid-October 1990
182-N-2-DT	100-N	Diesel Fuel	15,000	Aug. 1990	mid-October 1990
182-N-3-DT	100-N	Diesel Fuel	15,000	Aug. 1990	mid-Öctober 1990
100-N-SS-27	100-N	Unleaded Gasoline	3,000	Aug. 1990	mid-October 1990
3000-1	3000 Area	Either Leade or Unleaded Gasoline or Diesel Fuel	d 12,000	Feb. 1990	December* 1990
3000-2	3000 Area	и и	12,000	Feb. 1990	December* 1990
3000-3	3000 Area	N H	12,000	Feb. 1990	December* 1990
3000-4	3000 Area	M H	12,000	Feb. 1990	December* 1990
325	300 Area	Diesel Fuel	550	Unknown	December* 1990

^{*}Actual removal dates may vary dependent upon winter weather conditions.

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Addressee

Correspondence No.

Leo E. Little

Mike C Osweiler Ecology

Incoming 9103422 XRF: 9154369D

Subject: INFORMATION AND NOTIFICATIONS FOR UNDERGROUND STORAGE TANKS AT THE

HANFORD SITE

INTERNAL DISTRIBUTION Approval Date Name Location w/att Correspondence Control A3-01 M. R. Adams R. J. Bliss, Level 1 H4-55 B3-04 L. C. Brown H4-51G. D. Carpenter B2-16 M. L. Douglas R2-77 R. A. Evanoff G4-10 K. A. Gano X0-21 C. J. Geier H4-57 R. P. Henckel H4 - 55K. L. Hoewing **B3-06** M. C. Hughes (2) L4-88 G. S. Hunacek X0 - 42R. E. Lerch, Assignee B2-35 M. A. Mihalic L4-88 A. D. Poor G4 - 11R. L. Shuck **S4-67** E. H. Smith B2-19 D. J. Watson X0 - 41R. D. Wojtasek L4-92

EDMC

H4-51

Department of Energy

Richland Operations Office P.O. Box 550 Richland, Washington 99352 JUL 16 1991 Civile, 7-19-9, Reflevice for Completed Letter.

91-ERB-129

Incoming: 9103422

Billiong

Mr. Mike C. Osweiler
Nuclear and Mixed Waste,
Hanford Project
State of Washington
Department of Ecology
7601 W. Clearwater, Suite 102
Kennewick, Washington 99336

Dear Mr. Osweiler:

INFORMATION AND NOTIFICATIONS FOR UNDERGROUND STORAGE TANKS (USTs) AT THE HANFORD SITE

The following notifications and information on the Hanford USTs is attached to comply with the requirements of the State of Washington Department of Ecology's (Ecology) UST Regulations as described in WAC 173-360.

Washington State UST Notification Forms

The Notification forms provided in Attachment 1, have been updated to delete those tanks removed during Calendar Year (CY) 1990 and CY 1991 (to date), and to include 12 active emergency generator tanks that were previously interpreted as being exempt from the Federal UST Regulations. In addition, 21 abandoned USTs, all of which were taken out of service prior to December 22, 1988, have been included. The notification forms do not include the deferred heating oil tanks that do not require operating permits.

Notice of Permanent Closure of USTs 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27

Since the tanks (105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27) were removed prior to the time of Ecology's UST Regulations' becoming effective, the old Notice of Permanent Closure of UST forms have been used and included in Attachment 2. The USTs removed after December 29, 1990, (3000-1/-2/-3/-4) will have the required forms submitted in accordance with 173-360-630 (12) after the site is closed or when final remediation is complete. (This was a release site.)

Closure of USTs at the Hanford Site

A total of nine (9) USTs have been permanently closed (removed) in CY 1990/1991 to date. Five USTs (105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, and 100-N-SS-27) required by CFR 280/281 to be closed by December 22, 1990, were closed (removed) prior to that date. Those USTs (3000-1/-2/-3/-4) that were permanently taken out of service in February 1990, were removed in January 1991. Attachment 3 lists these USTs, their locations, contents, date removed from service, and their actual removal dates.

Mr. Mike C. Osweiler

-2-

30 ERB-129

The advance notification for removal of these USTs (Letter 90-ERB-117, Mr. R. D. Izatt, DOE-RL, to Mr. Timothy L. Nord, Ecology, "Advance Notification for Closure of Underground Storage Tanks at the Hanford Site," dated September 20, 1990) stated that approximately 1,200 linear feet of 2-inch and 4-inch diameter piping associated with the USTs to be removed at the N Reactor site would be pressure tested, capped, and left in place until final remediation of the N Reactor site. Since pressure testing is not a requirement of 40 CFR 280.71, nor of WAC 173-360-385, the lines were capped, but not pressure tested. There was no history of any leakage associated with these tanks/piping, and therefore, no reason to suspect any leakage. However, a recent site inspection resulted in notification to Ecology of a site leak/spill associated with the piping system.

The advance notification also stated that a non-regulated, abandoned UST (tank 325) located in the 3000 Area would be removed along with tanks 3000-1/-2/-3/-4. Because of funding considerations, this tank was not removed at that time. Its removal will be rescheduled as funding becomes available and advance notification will be provided as required by the regulations.

The sites of USTs 100-N-SS-27 and 3000-1/-2/-3/-4 (one site) were discovered to be release sites after the tanks were removed. These sites were contaminated with gasoline and diesel fuel which, apparently, were the result of spills/tank overfills and, in the 3000 Area, the result of leaking pressurized piping associated with the USTs. Notifications were made to Ecology as required by the regulations, and the sites have been inspected by Ecology personnel. A remediation plan is being prepared for the 3000 Area site and will be made available to Ecology for review and comments prior to being finalized. (The initial draft is expected to be completed by June 25.) The sister tank to the 100-N-SS-27 tank (UST 100-N-22-28) is planned to be removed in mid-July to facilitate the characterization/remediation of this site. 30-day advance notification has been provided to Ecology for the removal effort.

All the USTs that have been removed as indicated above (with the exception of the 105-LFT tank) are currently stored at the 100-C Area on the Hanford Site and are scheduled to be disposed of at off site as scrap. A subcontract for this action is currently being prepared and is expected to be completed by August 1991. After its removal, the 105-LFT tank was discovered to be radioactively contaminated on its exterior surface and is undergoing decontamination at N Area prior to its being cut up and disposed of at the low level waste burial ground on the Hanford Site.

The site of USTs 3000-5/-6 (which were removed in September 1989) was also discovered to have been a release site (see the 45-day report dated November 1, 1989) and was resampled and then backfilled in January 1991. Based on the initial sampling results, no additional remediation was required. Confirmation soil samples were taken and the results of the analysis, along with the applicable forms as required by WAC 173-360, will be submitted to Ecology for concurrence on closing the site.

Mr. Mike C. Osweiler

-3-

91-ERB-129 **JL** 16 1991

Hanford UST Tightness Testing and Piping Pressure Testing for CY 1991

Attachment 4 provides the results of the tightness testing required by 40 CFR 280. Tightness testing was completed by December 22, 1990, for all the USTs as required by the regulations. The results were acceptable with the exceptions of UST 200E-HSF17 (helicopter refueling pad) and UST 100-N-SS-27. UST 200E-HSF17 was found to have a leak around each of its manhole covers during its initial testing in August 1990. In addition, testing on its suction piping was not completed due to an internal pump leak. The tank was temporarily taken out of service, repaired, and was successfully retested on December 28, 1990. UST 100-N-SS-27 was determined to have a leak near the top of the tank. This tank was removed from service in June and closed (removed) in December 1990.

If there are any questions concerning this matter, please contact Mr. Paul M. Pak of my staff at (509) 376-4798.

Sincerely,

ERD: PMP

Leo E./Little, Assistant Manager
For Environmental Management

Attachments:

- 1. Washington State UST Notification Form
- 2. Notice of Permanent Closure of USTs
- 3. Hanford USTs Closures During CY 1990/1991
- Hanford UST Tank Tightness Testing and Piping Pressure Testing for CY 1990

cc w/att:

- P. T. Day, EPA
- T. Lufkin, Ecology
- T. L. Nord, Ecology
- T. B. Veneziano, WHC

cc w/o att:

- W. H. Bodily, KEH
- T. D. Chikalla, PNL
- R. E. Lerch, WHC
- M. C. Hughes, WHC

CORRESPONDENCE

DISTRIBUTION

COVERSHEET

H4-51

Author

Addressee

Correspondence No.

N. M. Highland U.S. Dept. of Energy

Dave Nylander Ecology

Incoming 9100299 XRF: 9150683D

Subject: FORTY-FIVE DAY REPORT FOR UNDERGROUND STORAGE TANK 100N-SS-27

INTERNAL DISTRIBUTION Approval Date Name Location w/att Correspondence Control A3-01 χ H4-55 M. R. Adams χ R. J. Bliss B3-04 XXXXXXXXXXXXXXXXXXXXXXX L. C. Brown H4-51 G. D. Carpenter B2-16 M. L. Douglas R2-77 R. A. Evanoff G4-10 K. A. Gano X0-21 C. J. Geier H4-57 R. P. Henckel H4 - 55K. L. Hoewing B3-06 M. C. Hughes (2) L4-88 G. S. Hunacek I. D. Jacques 16-60 K. R. Jordan B3-51 R. E. Lerch (assignee) B2-35 M. A. Mihalic L4-88 A. D. Poor G4-11 R. J. Pyzel X0-42 R. L. Shuck \$4-67 E. H. Smith B2-19 D. R. Speer R2-77 G. E. Van Sickle R2-81 D. J. Watson X0-41 R. D. Wojtasek L4-92 **EDMC**

Department of Energy

Richland Operations Office P.O. Box 550 Richland, Washington 19352

JAN 31

Incoming 9100299

Mr. Dave Nylander State of Washington Department of Ecology 7601 W. Clearwater, Suite 102 Kennewick, WA 99336

Dear Mr. Nylander:

FORTY-FIVE DAY REPORT FOR UNDERGROUND STORAGE TANK (UST) 100N-22-27

Attached are the Twenty and Forty Five Day Reports on UST 100N-SS-27, that was discovered to be leaking after its removal on December 18, 1990. This report is the required follow-up of the verbal notification given to the Washington State Department of Ecology by the U.S. Department of Energy Richland Operations Office (DOE-RL) on December 19, 1990. A Twenty/Forty Five Day report was previously submitted (July 1990) for this same UST when it was discovered to have a minor leak during tightness testing.

Should you have any questions or require additional information, please contact Mr. N. G. Thomas of my staff on (509) 376-9624 or Mr. M. C. Hughes of Westinghouse Hanford Company on (509) 373-3262.

Sincerely,

Nadine M. Highland, Director Site Infrastructure Division

Maden M. Hypland

SID:NGT

Enclosure

cc w/encl:

P. T. Day, EPA

R. E. Lerch, WHC B2-35

R. F. Stanley, Ecology

T. L. Nord, Ecology

R. A. Holten, DOE-RL

G. M. Bell, DOE-RL

R. D. Izatt, DOE-RL

FORTY-FIVE DAY REPORT FOR UNDERGROUND STORAGE TANK 100N-SS-27

INTRODUCTION

This report describes the site investigation and remediation plan for the 100N-SS-27 fuel tank removal, located in the 100 N Reactor Area on the Hanford site at the Fuel Station (Figure 1). The tank, approximately 23 years old, has a 3,000 gallon capacity and was last used to store unleaded gasoline. The tank was taken out of service on June 22, 1990, because of a failed tightness test conducted the previous day. Twenty-four hour notification was made to DOE-RL and Ecology per 40CFR280.61, and an Event Fact Sheet (#D&D/100-10-90) was prepared as well.

TANK EXCAVATION

Tank excavation and tank removal were completed on December 18, 1990. Approximately 25 feet of associated piping was removed from the ground along with the tank. An inspection of the tank did not reveal any holes or cracks and the overall condition of the tank was very good. The tank was taken to the 190-C storage pad and will be cleaned and sold as scrap.

Immediately following the lifting of the tank, soil sampling was conducted to test for the presence of contaminated soil. Samples were collected for laboratory analyses of volatile and semi-volatile compounds to assess potential petroleum hydrocarbon contamination. An organic vapor monitor (OVM; HNU model PL 101) was used for the field investigation. The field procedure consisted of collecting approximately 1/2 cup of soil, placing it in a plastic bag, and sealing by twisting the top while including as much air as possible. The plastic bag was then shaken for approximately 10 seconds and the OVM probe was inserted in the bag for a reading. Photographs were taken during and after tank excavation to document the condition of the tank and surrounding soil.

INITIAL FIELD INVESTIGATION

The field sampling in the north 8 feet of the excavation (see Figure 2) did not indicate a presence volatile organics. Samples taken at the south end of the tank impression had readings in excess of 200 ppm. Additional field samples were taken on the south end of the excavation between the 100N-SS-27 and -28 tank, approximately 9 feet apart, which showed vapor concentrations of up to 350 ppm. Field sampling along the piping trench did not reveal the presence of any volatile organics.

In addition to the field screening, additional samples were collected in the same approximate locations, for laboratory analyses (Figure 2). These were taken with new stainless steel spoons and deposited directly into clean QA I-Chem bottles. The samples were packed in ice and sent to the K-25 Laboratory in Oak Ridge Tennessee for analysis. Chain of custody records will be maintained.

1

INITIAL CLEAN UP

The initial site remediation plan was to excavate while taking field samples until clean soil was encountered. Because the tank was in good condition, the contamination was believed to be from a confirmed and reported 83- to 95-gallon spill that occurred on January 18, 1988, and from occasional overfills and spills that may have gone unreported over the tank's 20 plus years of service.

On January 11, 1990, another 2 feet of soil was removed from the south end of the excavation with every 5th bucket being sampled with the OVM bag technique. The last 4 buckets showed sequentially greater concentrations of volatile organic vapors, ranging from 200 ppm to 350 ppm. There was no indication that the lower limit of contamination had been reached. The contamination is believed to extend south, under the neighboring tank, 100N-SS-28 (Figure 3).

INTERIM PLAN

The 100-N-SS-28 tank will be removed within the next three years. Because complete clean up would require excavation back under this tank, it is planned to remediate the entire site at a later date. The cleanup may take place at the time of removal of the 100-N-SS-28 tank or as part of the 100-NM-1 Operable Unit. The 100-N-SS-28 was tightness tested on October 18, 1990 and was determined to be tight per 40CFR280.43(c). Furthermore, filling procedures have been implemented that prevent any tank overfills.

There are four ground water monitoring wells positioned down stream of the fuel station. These wells have been monitored since June 1989 for a limited constituent list. The majority of the organic constituents were below detectable limits. Any elevated quantities of aliphatic hydrocarbons (indicating diesel fuel) would have shown up in the volatile organic analysis. None were found in any of the groundwater samples collected from these wells.

In consideration of the above information, it is believed that the source of the existing contamination has been eliminated.

We are continuing to investigate the cause of the contaminated soil found under tank 100-N-SS-27. Other measures are being taken to determine the extent of the contaminated soil and whether cleanup should be deferred until 100-N-SS-28 tank is removed in three years.

FIGURE 2 SAMPLE POINT LOCATIONS

SCALE

FIGURE 3

CONTAMINATION FOUND UNDER SOUTH END OF 100N-SS-27 AND BETWEEN THE TWO TANKS.

9150027D ATTACHMENT

TWENTY-DAY REPORT FOR UNDERGROUND STORAGE TANK 100N-SS-27

This report describes the site investigation and intended remediation activities for the 100N-SS-27 underground storage tank. This 3000 gallon tank site is located at the 100 N Area Service Station on the Hanford Site and is approximately 23 years old. It was last used to store unleaded gasoline. The tank was taken out of service on June 22, 1990, because of a failed tightness test conducted the day before. The leak was determined to be in the top of the tank where the fill tube is attached. This portion of the tank does not normally contain product, but was used for the tightness test. This was previously reported to Ecology in July 1990 via a 20/45 Day Report.

Tank excavation and removal were initiated on December 13, 1990, per 40 CFR 280.71. Immediately following the tank removal on December 18, soil sampling was conducted to test for the presence of contaminated soil. Samples were collected for laboratory analyses of volatile and semi-volatile compounds to assess potential petroleum hydrocarbon contamination. An organic vapor monitor was used for the field investigation. The field procedure consisted of collecting approximately 1/2 cup of soil, placing it in a plastic bag, and sealing by twisting the top while including as much air as possible. The plastic bag was then shaken for approximately 10 seconds and the OVM probe was inserted in the bag for a reading.

The field sampling indicated organic vapor concentrations greater than 200 ppm were present in the south end of the tank impression. Additional samples taken on the south end between the 100N-SS-27 and -28 tank, approximately nine feet apart, showed vapor concentrations of up to 350 ppm.

The tank was in very good condition with no observable holes. It is believed that the contamination was from occasional overfilling of the tanks and from an 83 to 95 gallon spill that occurred on January 18, 1988, (and reported to Ecology). The gravel and porous backfill surrounding the tanks may have created a natural pathway for surface spills.

Current plans are to remove the contaminated soil from the tank impression, sample for organic vapors, and backfill once the excavation is determined to be clean. The contaminated soil will be taken to an area where it can be stored on plastic for proposed solid phase remediation at a later date. The tank has been taken to a storage pad and will be cleaned/flushed and disposed of as clean salvage.

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Addressee

Correspondence No.

M. A. Mihalic, 6-0967

E. A. Bracken, RL

9155942D

Subject: UNDERGROUND STORAGE TANK 100N-SS-28 CLOSURE

Approval	Date	Name	Location	w/att
		Correspondence Control	A3-01	X
		President's Office	B3-01	
		R. J. Bliss	B3-04	χ
		G. D. Carpenter	B2-16	χ
		M. L. Douglas	R2-77	X
0.1	- 1 - 1	C. J. Geier	H4-57	X
x RPH	8/13/91	R. P. Henckel	H4-55	X
X		K. L. Hoewing	B3-06	Х
Y Etter	8/13/91	M. C. Hughes (2)	L4-88	Х
Y PAIL	8/13/9) 8/13/5/	G. S. Hunacek	X0-41	Х
A · —	ul 8.13.91	R. E. Lerch	B2-35	X
x mam	ht 8.13.91	M. A. Mihalic	L4-88	Х
		D C Church	S4-67	X
'		R. G. Shuck E. H. Smith D. J. Watson	B2-19	X
ymam,	B.1491	D. J. Watson	X0-41	χ
	4	R. D. Wojtasek	L4-92	X
		EDMC	H4-22	X

P.O. Box 1970 Richland, WA 99352

August 14, 1991

9155942D

Ms. E. A. Bracken, Director Environmental Restoration Division U.S. Department of Energy Field Office, Richland Richland, Washington 99352

Dear Ms. Bracken:

UNDERGROUND STORAGE TANK 100N-SS-28 CLOSURE

Attachment 1 to this letter is the completed Permanent Closure/Change-In-Service Checklist, and Attachment 2 (two copies) is the Site Check/Site Assessment Checklist for underground storage tank 100N-SS-28, which was permanently closed (removed) on July 17, 1991. These checklists are required to be submitted to Ecology in accordance with the requirements of Washington Administrative Code 173-360-630 (12).

The U.S. Department of Energy Field Office, Richland, is requested to submit these checklists to the Washington State Department of Ecology (Ecology) no later than August 19, 1991. Attachment 3 is a draft transmittal letter to Ecology.

If you have questions regarding this information, please call me on 376-7000, or Mr. M. C. Hughes at 376-0787.

Very truly yours,

R. D. Wojtasek, Manager

Environmental Restoration Program

Environmental Division

mag

Attachments 3

RL - J. K. Erickson

E. D. Goller

R. O. Puthoff (w/o attachments)

R. P. Saget

9155942D ATTACHMENT 1 2 Pages

UNDERGROUND STORAGE TANK Site Check/Site Assessment Checklist

The purpose of this form is to certify the proper investigation of an UST site for the presence of a release. These activities shall be conducted in accordance with Chapter 173.360 WAC. A description of the various situations requiring a site check or site assessment is provided in the guidance document for UST site checks and site assessments.

This Site Check/Site Assessment Checklist shall be completed and signed by a person registered with the Department of Ecology to perform site assessments.

Two copies of the results of the site check or site assessment should be included with this checklist according to the reporting requirements in the guidance document for UST site checks and site assessments.

For further information about completing this form, please contact the Department of Ecology UST Program.

The completed checklist should be mailed to the following address:

Underground Storage Tank Section Department of Ecology Mail Stop PV-11 Olympia, WA 98504-8711

1. UST SYSTEM OW	NER AND LOCATION		the state of the s
UST Owner/Operator:	II S Department Of Energy Rich	land Operations	
Owners Address:	825 Jadwin		550 P.O. Bos
I	Richland WA		99352
Telephone:	City Sta (509) 376-7387	ie	TP Code
Site ID Number (on invoi	ce or available from Ecology if tank is registered)		
Site/Business Name:	U.S. Department of Energy - Ricl	nland Operations	
Sile Address:	825 Jadwin P.O. Box 550		Benton
	Richland W/	·	99352
	Cay St.	ile .	₹# Code
2. SITE CHECK/SITE	ASSESSMENT CONDUCTED BY:		
Registered Person:	Ronald M. Mitchell Westinghouse Hanford Company	P. O. Box 1970	
Audress.	Skert		99352
Telephone:		Me .	DP Code
	B-20		

WHC-SD-EN-TI-136, Rev. 0
This page must be completed separately for each tank permanently closed (decommissioned) or change-in-service at the site. For additional tanks you may photocopy this form prior to completing.

3.	TANK CLOSURE/CHANGE-IN-SERVICE INFORMATION	:		
1.	Tank ID Number (as registered with Ecology): 100N-SS-28 2. Year installed: 1976			
	Tank capacity in gallons: 2000 4. Date of last use:)		
	Last substance stored: Uniteded Gasoline 6. Date of closure/change-in-se	ovice:	7/17/9	1
	[V] [···]	-		
	ALA	ange-in-S	Selvice [
8.	If in-place closure is used, the tank has been filled with the following substance: N/A			
9.	If change-in-service, Indicate new substance stored in tank: N/A .			
10.	Local permit(s) (if any) obtained from: N/A		· · · · · · · · · · · · · · · · · · ·	
	Always contact local authorities regarding permit requirements.			
11.	Has a site assessment been completed? Yes X No			
	Unless an external release detection system is operating at the time of closure or change in service, and a report is p 173-360-390, a site assessment must be conducted. This site assessment must be conducted by a person registered Ecology to perform site assessments. Results of the site assessment must be included with the Site Assessment Change	d with the	Departmen	t of
4.	CHECKLIST			
	Each item of the following checklist shall be initiated by the licensed supervisor whose signature	appears Yes	below. No	NA*
1.	Has all liquid been removed from product lines?	103	W	1,42
2.	Has all product piping been capped or removed?		~	
3.	Have all non-product lines been capped or removed?	~		
4.	Have all liquid and accumulated studges been removed from the tank?		~	-
5.	Has the tank been properly purged or inerted?	~		
6.	Have the drop tube, fill pipe, gauge pipe, pumps and other tank fixtures been removed?		~	
7.	Have all tank openings been plugged or capped? NOTE: One plug should have 1/8 inch vent hole.	~		
8.	Have all sludges removed from the tank been designated and disposed of in accordance with the state of Washington's dangerous waste regulations (Chapter 173-303 WAC)?			
9.	If removed, was tank properly labeled and disposed of in accordance with all applicable local, state and federal regulations? LABELED AND AWAITING FINAL DISPOSAL		-	
	em not applicable			
the	ereby certify that I have been the licensed supervisor present on site during the above listed permanent of best of my knowledge they have been conducted in compliance with all applicable state and federal law seedures pertaining to underground storage tanks.	vlosure a ws, regul	activities a ations and	nd to l
Pe	rsons submitting false information are subject to penalties under Chapter 173.360 WAC.			
4	Maust 12, 1991 Daniel Kiley Signature of Licensed Superistr			 -
5.	ADDITIONAL REQUIRED SIGNATURES			
	8/15/91 Dan 00 E Line.			
-	Date Signature of Licensed Service Provider (Him) Owner or Authorizm Flepresentative			
-	Date Signature of Tank Owner or Authoritide Representative			

ECY 010-162

(12/90)

B-21

page 2

9155942D ATTACHMENT 2 2 Pages (2 copies)

WHC-SD-EN-TI-136, Rev. 0 UNDERGROUND STORAGE TANK

Permanent Closure/Change-In-Service Checklist

The purpose of this form is to certify the proper closure/change-in-service of underground storage tank (UST) systems. These activities must be conducted in accordance with Chapter 173.360 WAC. Washington State UST rules require the tank owner or operator to notify Ecology in writing 30 days prior to closure or change-in-service of tanks. This must be done by completing the 30 Day Notice form (ECY 010-155).

This Permanent Closure Checklist shall be completed and signed by a Licensed Decommissioning Supervisor. The supervisor shall be on site when all tank permanent closure/change-in-service activities are being conducted. The firm which employs the licensed supervisor shall also be licensed by the Washington State Department of Ecology as a Service Provider. If any of the activities listed below have been supervised by a different licensed supervisor, a separate checklist must be filled out and signed by the licensed supervisor performing those activities.

For further information about completing this form, please contact the Department of Ecology UST Program.

A separate checklist must be completed for each UST system (tank and associated piping), except that UST systems at one site may be reported together by completing page 2 of this form separately for each system. The completed checklist should be mailed to the following address within 30 days of the completion of the closure or change-in-service.

Underground Storage Tank Section Department of Ecology Mail Stop PV-11 Olympia, WA 98504-8711

				. 6.
1. UST SYSTEM OW	NER AND LOCATION			
Site Owner/Operator:	U.S. Department of Energy Field Office, Richland			
Owners Address:	825 Jadwin		55	-
	Richland	WA		P.O. Box 352
	KICHIANG	State		ZIP-Code
Telephone:	(509) 376-7387			
		(agistaras): 0127	62	
Site ID Number (on invo	ice or available from Ecology if tank is	registered):	0.3	
Site/Business Name:	U.S. Department of Energ	gy Field Office	, Richland	
Site Address:	825 Jadwin, P.O. Box 55	0	Bent	on
	Street			County
	Richland	WA State	993	352 ZP Code
	City	State		24 0002
2 TANK PERMANE	NT CLOSURE/CHANGE-IN-SERV	/ICE PERFORMED	BY:	
L. TAINT ENDANCE	, 020002,0			
Firm:	Westinghouse Hanford Co	mpany	License Number:	5001592
		<u> </u>	_	1970
Address:	Street			P.O. Sex
	Richland	WA		99352
F-1b	(509) 376-7411	State		ZIP Code
Telephone:			Decommissioning	U000770
Licensed Supervisor:	D. A. Riley		License Number:	W000778
		B-23		
ECV 0.0 100 (12/00)	_			

Rev. 0		
2. Year installed: 1976		
4. Last substance stored: UNLEADED	GASOLI	NE
AENT .		i.
al contamination		
•		
	•	
n closed before December 22, 1988		
	Ab Mate	
plicable procedures specified in the UST cology?	Yes	No
	T mic	
and at Scology or delegated agency within 24		
	10	
and or secondly or said-area and	Run	
hecklist?		V
thecklist? Ited to the Department of Ecology according to the lance.		Ru
	2. Year installed: 1976 4. Last substance stored: UNILEADED MENT All contamination all contamination 2 months In closed before December 22, 1988 Son registered with the Department of Ecology?	2. Year installed: 1976 4. Last substance stored: Util EADED GASOL I AENT All contamination at contamination 2 months In closed before December 22, 1988 Son registered with the Department of Ecology where the cology of the cology? Publicable procedures specified in the UST Cology?

ECY 010-134

(12/54)

9155942D ATTACHMENT 3 1 Page

Department of Energy

Richland Operations Office P.O. Box 550 Richland, Washington 99352

Mr. Mike C. Osweiler
Nuclear and Mixed Waste,
Hanford Project
State of Washington
Department of Ecology
7601 W. Clearwater, Suite 102
Kennewick, Washington 99336

Dear Mr. Osweiler:

UNDERGROUND STORAGE TANK 100N-SS-28 CLOSURE

Enclosed are the completed Permanent Closure/Change-In-Service Checklist and the Site Check/Site Assessment Checklist (two copies) for underground storage tank 100N-SS-28, which was permanently closed (removed) on July 17, 1991.

These checklists are submitted in accordance with the requirements of WAC 173-360-630 (12).

The tank which was previously emptied and rinsed has been transported to the 100-B Area where it is awaiting final disposal (salvage). The remaining system piping (two lines approximately ten feet long) and pumps are being scheduled for removal. As far as can be determined, no product remains in these lines.

If you have any questions or require additional information, please call Mr. Eric Goller at (509) 376-7326.

Sincerely,

E. A. Bracken, Director Environmental Restoration Division

)

Enclosures 2

cc: w/o encls.: P. T. Day, EPA R. E. Lerch, WHC T. Lufkin, Ecology

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Addressee

Correspondence No.

E. A. Bracken U.S. Dept. of Energy Mike C. Osweiler

Ecology

Incoming 9102476 XRF: 9154145D

Subject: PERMANENT CLOSURE OF UNDERGROUND STORAGE TANK 100N-SS-28

INTERNAL DISTRIBUTION

Approval	Bate	N ame	Location	w/att
٠		Correspondence Control	A3-01	Х
		M. R. Adams	H4-55	
		R. J. Bliss	B3-04	
		L. C. Brown	H4-51	
		G. D. Carpenter	B2-16	
		M. L. Douglas	R2-77	
		R. A. Evanoff	G4-10	
		K. A. Gano	X0-21	
		C. J. Geier	H4-57	
		R. P. Henckel	H4-55	
		K. L. Hoewing	B3-06	
		M. C. Hughes (2)	L4-88	X
		G. S. Hunacek	X0-42	
		R. E. Lerch (assignee)	B2-35	
		M. A. Mihalic	L4-88	Χ
RE	CEIVED	A. D. Poor	G4-11	
		R. L. Shuck	S4-67	
. [1	JN 2 0	E. H. Smith	B2-19	
٥,	511 .5 0	D. J. Watson	XO-41	
D.	J. WATSON	R. D. Wojtasek	L4-92	
		EDMC	H4-51	x

Department of Energy

Richland Operations Office P.O. Box 550 Richland, Washington 99352

Incoming: 9102476

JUN 13 1991

91-ERB-116

Mr. Mike C. Osweiler
Nuclear and Mixed Waste,
Hanford Project
State of Washington
Department of Ecology
7601 W. Clearwater, Suite 102
Kennewick, Washington 99336

Dear Mr. Osweiler:

PERMANENT CLOSURE OF UNDERGROUND STORAGE TANK (UST) 100N-SS-28

The purpose of this letter, as required by WAC 173-360-385, is to provide the Washington State Department of Ecology (Ecology) with at least 30 days advance notification prior to beginning permanent closure (removal) of UST 100N-SS-28.

This tank is located at the 100N Area of the Hanford Site, has a capacity of 2,000 gallons, and is constructed of 3/16" wall carbon steel with an asphalt coating. Originally, the 100N-SS-28 tank contained diesel fuel. Unleaded fuel was transferred from the UST 100N-SS-27 into UST 100N-SS-28 following closure of the 100N-SS-27 UST in June of 1990. The 100N-SS-28 tank was tightness tested in October of 1990 and found to be tight per 40 CFR 280/281.

This tank is no longer needed and is being removed to facilitate the site assessment of the 100N fuel station site. These two tanks were both part of a self-service gas station and were located approximately nine feet apart. Tank 100N-SS-27 was removed in December 1990 after it had failed tightness testing and the decision made, because of its age, to close the tank rather than upgrade it to new tank standards. Contaminated soil was discovered at the site after the tank was removed. (See Enclosure 1, Twenty-Day Report; and Enclosure 2, Forty-Five Day Report.)

Since this site has already been confirmed as a release site and the required 24-hour notification given after the removal of the 100N-SS-27 UST, an additional 24-hour notification pursuant to WAC 173-360-372 will not be given unless there is other evidence of a release emanating from tank 100N-SS-28. However, all other reporting requirements as given in WAC 173-340-450 will be met. A plan for the remediation of the site will be prepared following the 100N-SS-28 removal and site characterization activities, which are expected to be completed by August 15, 1991. Also, additional site characterization is being conducted to determine the extent of the contamination. Ecology will be provided with a draft of the remediation plan for review prior to initiating remedial activities.

JUN 13 1991

Mr. Mike C. Osweiler

-2-

91-ERB-116

If you have any questions or require additional information regarding this letter, please call Mr. Paul Pak of my staff on 376-4798.

Sincerely,

E. A. Bracken, Director Environmental Restoration Division

ERD: PMP

į

Enclosures: As stated

cc w/encls: P. T. Day, EPA R. E. Lerch, WHC

M. C. Hughes, WHC
T. F. Veneziano, WHC
T. L. Nord, Ecology
D. Nylander, Ecology
R. F. Stanley, Ecology

APPENDIX C

UNUSUAL OCCURRENCE REPORTS

CONTENTS

1

Gasoline Spill to Ground (WHC-UO-88-004-R,D&EO-1)	C-1
Leaking Underground Storage Tank (RLWHC-WHC600EM-1990-0337)	C-5
Characterization of Spill Site (RLWHC-NREACTOR-1991-1030)	C-11
Leaking UST (D&D/100-01-90)	C-17

P.O. Box 1970 Richland, WA 99352

March 11, 1988

8851734

Mr. J. L. Rhoades, Assistant Manager Safety, Safeguards and Quality Assurance U. S. Department of Energy Richland Operations Office Richland, Washington 99352

Dear Mr. Rhoades:

UNUSUAL OCCURRENCE WHC-00-88-004-R, D&EO-1, GASOLINE SPILL TO GROUND, 89 GALLONS

Reference: Letter, M. W. Walcher to J. L. Rhoades, "Unusual Occurrence WHC-00-88-004-R,D&EO-1, GASOLINE SPILL TO GROUND, 89 GALLONS", 8850715, February 1, 1988

The attached final Unusual Occurrence Report for the subject gasoline spill is provided for your information. It has undergone a controlled nuclear information review and has been determined to be unclassified and satisfactory for public release.

Very truly yours,

M. W. Walcher, Manager Operations Support Services

pck

Attachment

DOE-RL - A. W. Kellogg, AMO Operations Office

Westinghouse Hanford Company	Report Number: WHC-UO-88-004-R,D&EO-1
	Date of Event/Occurrence: January 18, 1988
Status and Date: Initial 1/28/8	38 Time of Event/Occurrence: 2:10 p.m.
XFinal3/11/8	38

1. Department or Project

Operations Support Services

2. Facility, System, and/Equipment

100-N Fuel Station, 1716 NA Building

Vehicle: 68C 4365

Nozzle: OPWllA 15/16 and OPWll-AKH 13/16

3. Subject of Event/Occurrence

Gasoline Spill to Ground, 89 gallons

4. Apparent Cause: Design Material X Personnel P Procedure Other

<u>Personnel</u>: Inattention to fueling activities and failure to report the

second spill.

Material: Failure of the fueling nozzle automatic shut off function.

5. Description of Event/Occurrence:

Employee was dispensing fuel from tank truck, 68C 4365, (equipped with three separate storage tanks and dispensing systems) into underground fuel tanks at the 100-N fueling station. He placed the fuel dispensing nozzle into the 4" fill spout of the service station tank, set the automatic shut-off and returned to his truck to complete related paperwork while waiting for the tank to fill. The nozzle did not shut off and the tank overflowed. The employee did not observe the spillage until a passerby walked up to the truck to inform him of the overflowing condition. The fuel truck driver immediately turned the nozzle off manually. The passerby noted the fuel truck driver was in the truck attending paperwork and wearing radio headphones which may have contributed to his inattention to fueling activities. The spill was reported to N-Reactor Operations Management and the Supervisor, Special Delivery Services. Initial assessment of the spill area was done by N-Reactor Operations Management personnel. Environmental Assurance was advised.

The employee then proceeded to manually fill the second underground tank with the remaining fuel in the first tank of the truck. When that truck tank was drained, he stored the hose and nozzle and proceeded to continue filling the second service station tank from the second truck tank with a different nozzle. He set the new nozzle on automatic and stepped back to remain clear of the fumes.

This nozzle also failed to shut off causing an overflow of the second tank. The employee alertly stopped the flow of fuel as quickly as possible. The employee did not report the second spill thinking it was an insignificant amount based on earlier conversations with N-Reactor Operations Management personnel at the first spill.

6. Operating Conditions of Facility at Time of Event/Occurrence:

The service station was available for refueling. Three utility carts were parked adjacent to the station in the area where the fuel truck normally parks. This made it necessary to position the fuel truck 40 to 50 feet further away from the service station tanks than usual.

7. Immediate Evaluation:

The spill area was roped off. The immediate assessment at the time of the first spill was that the amount was not significant enough to require reporting as an Unusual Occurrence. The Environmental Protection Representative, later in the day, calculated the spill area and determine that the amount of fuel spilled exceeded the unusual occurrence reporting requirements of 220 pounds (35 gallons). Subsequent review of fueling and inventory records determined that a total of 89 gallons was spilled.

8. Immediate Action Taken and Results:

Action Taken:

- o Required report was made to DOE-RL.
- o Clean up and stabilization of the spill area was completed on January 20, 1988. The contaminated soil was loaded in 55 gallon drums for storage at the 1100 Area 90 day Storage Facility pending disposal.
- O Disciplinary action was taken against the employee for carelessness in performance of his work and failure to report in accordance with established procedures.
- o All employees in the Road, Delivery and Equipment Operation Section have been instructed that the use of personal radios with headphones is inappropriate in the work place and shall not be permitted.
- The defective nozzles were replaced on January 20, 1988, and tested to determine the cause of failure. Evaluation of the cause of the nozzle failures was completed by February 12, 1988. The results of the evaluation were inconclusive lending even more credence to the need for personnel attentiveness.

o.y	
Originator J. F. Woods, Manager-Road, Delivery and Equipment	Date <u>3/10/89</u> ment Operations
Approved by // R. In Leid / for W. J. Schlauder, Manager-Site Services	Date_ <i>3410 88</i>
Approved by Audition L. P. Diediker, Manager-100 Areas Environment	Date <u>3-10-88</u> al Protection
Approved by C. D. Hansen, Security Classification Review	Date <u>3/10/88</u>
Approved by M. W. Walcher, Manager-Operations Support Ser	Date

H = 0	WHC-SD-EN-TI-136, R	ev. 0
RLWHC-WHC600EM-1990-0337	UNOFFICIAL COPY OCCURRENCE REPORT	<pre>10 Day Update (Incomplete)</pre>
600 Area/Env. Restoration-Wast	e Mgmt	
	(Name of Facility)	
(Fac	ility Function Involved)
HANFORD SITE		
(Name of Labo	oratory, Site or Organi	zation)
Name: Evanoff, Richard Title: Fleet Maintenand Telephone No.: (509)376-6680	ce Manager	
(Fac	ility Manager/Designee)	
Name: Mihalic, M. Title: Hanford Surplus Telephone No.: (509)376-0967	Facility Program (FTS)444-0967	`
	(Originator)	
1. OCCURRENCE REPORT NUMBER:	RLWHC-WHC600EM-1990-0	0337
2. REPORT TYPE AND DATE:	Date	Time
<pre>[] Notification Report [] 10 Day Report [X] 10 Day Update (latest) [] Final Report</pre>	12/19/90 01/07/91	
3. OCCURRENCE CATEGORY:		
[] Emergency [X] Unusual [] Off-Normal		
4. DIVISION OR PROJECT :		
5. DOE PROGRAM OFFICE :		
FM - Fnyironmental Pastorat	ion	

C-5

RL--WHC-WHC600EM-1990-0337

UNOFFICIAL COPY OCCURRENCE REPORT

10 Day Update
(Incomplete)

6. SYSTEM, BLDG., OR EQUIPMENT :

7. UCNI?:

8. PLANT AREA:

Gas Station Tank

No

100 N

9. DATE AND TIME DISCOVERED:

10. DATE AND TIME CATEGORIZED:

12/18/90

1300

12/18/90

1400

11. DOE NOTIFICATION:

12/18/90

1500

12. OTHER NOTIFICATIONS :

12/18/90

Ganeo, Ken

13. SUBJECT OR TITLE OF OCCURRENCE :

Leaking Underground Storage Tank

14. NATURE OF OCCURRENCE:

15. DESCRIPTION OF OCCURRENCE:

During routine Underground Storage Tank (UST) removal as described in WHC-SP-0472, Implementation Plan for Title 40 CFR Regulations, Part 280 and 281, tank 100N-SS-27, located at 100N area was found to have contaminated soil adjacent to the tank. This UST had been utilized to store unleaded gasoline. Visual inspection of the tank did not indicate the tank integrity had been breached. Contaminated soil was found on the lower one third of the tank on the opposite end of the fill connection. It appears that an unknown quantity of unleaded gasoline had been spilled over the years, possibly from the adjacent tank, whose fill connection is within five feet of where the contamination was found.

16. OPERATING CONDITIONS OF FACILITY AT TIME OF OCCURRENCE:

Tank 100N-SS-27 had been taken out of service after routine tightness testing determined the tank had a leak.

C-6

)

RL--WHC-WHC600EM-1990-0337

UNOFFICIAL COPY OCCURRENCE REPORT

10 Day Update
(Incomplete)

17. ACTIVITY CATEGORY:

18. IMMEDIATE ACTIONS TAKEN AND RESULTS:

Sampling was completed, then additional sampling was conducted to determine how deep the contamination penetrated, this sampling revealed that the contamination had not penetrated below four inches from the bottom of the tank. Hanford Surplus Facility Program Office (Mike Mihalic) was notified of the leak at 1400 hours December 18, 1990. The Programs Office notified Environmental Protection. As this project is being performed under approved decommissioning work procedures, and it had been anticipated that the soil contamination could/would be found, this Occurrence Report is submitted for notification purposes. A complete detailed report will be prepared and submitted upon completion of the sample analysis. By copy of the unusual occurrence report, Environmental Engineering is requested to perform the necessary evaluation. notification, and remedial action as required by 40 CFR 280/281.

- 19. DIRECT CAUSE:
- 20. CONTRIBUTING CAUSE(S) :
- 21. ROOT CAUSE:

22. DESCRIPTION OF CAUSE:

From reconstructing the most likely cause of the contaminated soil found during the removal of tank 100N-27, it was observed that the tank condition did not indicate the tank to be a leaker. There has been one reportable spill at this location in 1988. It is assumed there have been other unreported spills at this tank fill location. The gravel and porous backfill surrounding the tanks creates a natural pathway for surface spills, to the location where the contaminated soil was found.

RL--WHC-WHC600EM-1990-0337

UNOFFICIAL COPY OCCURRENCE REPORT 10 Day Update (Incomplete)

23. EVALUATION: (By Facility Manager/Designee)

Current plan is to remove the layer of contaminated soil from the tank impression, sample for organic vapors and backfill once the excavation is clean.

24. IS FURTHER EVALUATION REQUIRED? :

Yes [] No [X]

IF YES - BEFORE FURTHER OPERATION? :

Yes []

No [X]

BY WHOM? :

BY WHEN? : --/--

25. CORRECTIVE ACTIONS:

(* = Date added/revised since final report was signed off)

1) On 1991/01/04, the contaminated soil was removed from the tank impression and the site cleared. Resampling of the site is being scheduled prior to backfilling.

TARGET COMPLETION DATE: --/--/-- COMPLETION DATE: --/--/--

26. IMPACT ON ENVIRONMENT, SAFETY AND HEALTH:

No worker was exposed to gasoline vapors during the excavation of the tank. The total quantity of the spills is unknown except for the reported spill January 18, 1988. Impact to the environment was minimal. Approximately 3 cubic yards of soil was contaminated. Impact Oversight Group: Environmental Assurance

27. PROGRAMMATIC IMPACT :

None at this time.

28. IMPACT UPON CODES AND STANDARDS:

The excavation of the tank was in accordance with the requirements of 40 CFR 280.71. No changes are required to existing procedures.

C-8

RL--WHC-WHC600EM-1990-0337

UNOFFICIAL COPY OCCURRENCE REPORT

10 Day Update
(Incomplete)

29. FINAL EVALUATION AND LESSONS LEARNED:

The purpose of removing underground storage tanks having contained petroleum products in accordance with 40 CFR 280.71 is to remove inactive and/or leaking tanks from service and from the ground. The regulations also require the clean up of spills associated with the tanks. This is the fourth of twenty-seven tanks removed to date where soil contamination has been found.

30. SIMILAR OCCURRENCE REPORT NUMBERS:

Fact sheet DD/3000-5-001-89 DD/703-1-01-89 DD/100-01-89

31. DOE FACILITY REPRESENTATIVE INPUT :

Entered by:

Date: --/--

OCCURRENCE REPORT NUMBER RL-WHC-WHC600EM-1990-337

Leaking underground storage tank.

25. CORRECTIVE ACTIONS:

This update describes the site investigation and remediation at the 100N Services Station. At this service station, two underground storage tanks were removed: 100N-SS-27 was removed in December 1990 and 100N-SS-28 was removed in July 1991.

Tank 100N-SS-27

The excavation and removal of tank 100N-SS-27 was completed on December 18, 1990. Approximately 25 feet of associated piping was removed from the ground along with the tank. An inspection of the tank did not reveal any holes or cracks. Field sampling conducted following the removal of the tank indicated the presence of volatile organics between it and the adjacent tank, 100N-SS-28. On January 11, 1991 additional soil was removed from between the tanks and found to be contaminated.

Tank 100N-SS-28

To further characterize and facilitate closure of the 100N-SS-27 site, tank 100N-SS-28 was removed in July 1991. At the time of removal of 100N-SS-28, saturated soil was observed in the tank depression. There had been no petroleum in the 100N-SS-28 tank as of December 1990 for safety reasons due to the removal of 100N-SS-27. The saturated soil was approximately 12 feet below land surface. The soil was removed and placed in four 55 gallon hazardous waste drums and disposed as a hazardous waste. In July and August 1991 groundwater samples were collected and tested for volatile organics. The analytical results indicated that no hydrocarbon contamination is present in the groundwater.

In September 1991, the UST site was excavated from 14 feet to 27 feet below land surface. At that depth, contaminated soil was found. This soil was removed and placed on plastic sheeting, bermed, and barricaded.

In order to determine the extent of petroleum contamination, it is planed to drill two wells since the site may not be able to be clean closed. These wells are to be placed at the plum location and down gradient of the service station. This additional work is planed during May-August time frame 1992.

WHC-SD-EN-TI-136, Rev. 0 Final Report RL--WHIC-NREACTOR-1991-1030 UNOFFICIAL COPY (Incomplete) OCCURRENCE REPORT N-Reactor and 100K Fuel Storages (Name of Facility) Category "A" Reactors (Facility Function Involved) HANFORD SITE (Name of Laboratory, Site or Organization) Name: Davis, Kenneth W. Senior Plant Engineer Telephone No.: (509)373-3143 (FTS)440-3143 (Facility Manager/Designee) Name: G. S. Hunacek Jr. Environmental Engineer Telephone No.: (509)373-1673 (FTS)440-1673 (Originator) 1. OCCURRENCE REPORT NUMBER: RL--WHC-NREACTOR-1991-1030 2. REPORT TYPE AND DATE: Date Time [] Notification Report [] 10 Day Report 1106 07/18/91 (MTZ) 07/18/91 [] 10 Day Update (latest) [X] Final Report 3. OCCURRENCE CATEGORY: [] Emergency [X] Unusual [] Off-Normal 4. DIVISION OR PROJECT: 100N Operations 5. DOE PROGRAM OFFICE: DP - Defense Programs

1993/02/02

.

page 1

WHC-SD-EN-TI-136, Rev. 0

UNOFFICIAL COPY OCCURRENCE REPORT

Final Report
(Incomplete)

6. SYSTEM, BLDG., OR EQUIPMENT:

7. UCNI?:

8. PLANT AREA:

Tank 100N-SS-28

No

100N

9. DATE AND TIME DISCOVERED:

10. DATE AND TIME CATEGORIZED :

07/17/91

1200

07/17/91

1230

11. DOE NOTIFICATION:

07/18/91

07/18/91

1530

UNKNOWN

DOE/HQ

DOE-RL

12. OTHER NOTIFICATIONS:

07/17/91 1230 07/17/91 1700 07/17/91 1230

1230 0945 P. M. Pack

P. M. Pack L. A. Huffman

M. C. Osweiler

DOE-RL WDOE

G. D. Trump

ONC

)

13. SUBJECT OR TITLE OF OCCURRENCE :

Characterization of spill site

14. NATURE OF OCCURRENCE:

- 2) Environmental
 - B. Hazardous Substances/Regulated Pollutants/Oil Releases

15. DESCRIPTION OF OCCURRENCE:

It was reported on 12/18/92, under Occurrence Report number: RL--WHC-WHC600EM-1990-0337, that one service station tank (100-SS-27) had leaked. To further characterize that leak, tank 100N-SS-28 was removed on 7/17/91. At the time of removal of tank 100N-SS-28, petroleum product was observed in the excavation area. Tank 100N-SS-28 was tightness tested 10/90 and passed. There has been no petroleum in 100N-SS-28 since it was emptied in December 1990. The excavation was approximately 12 feet below grade. Area that was found to contain product material was ten feet by ten feet.

C-12

WHC-SD-EN-TI-136, Rev. 0

UNOFFICIAL COPY OCCURRENCE REPORT

Final Report
(Incomplete)

16. OPERATING CONDITIONS OF FACILITY AT TIME OF OCCURRENCE:

N-Reactor is in "Transition to Shutdown". The re-fueling station has been deactivated and its storage tanks removed.

17. ACTIVITY CATEGORY:

Shutdown

1

18. IMMEDIATE ACTIONS TAKEN AND RESULTS:

Sampled the affected soil to determine what petroleum product was present.

Removed petroleum saturated soil and placed in four 55 gallon hazardous waste drums, and placed said drums on the 163N less than 90-day storage pad.

19. DIRECT CAUSE:

- Personnel Error
 B. Inattention to Detail
- 20. CONTRIBUTING CAUSE(S):

21. ROOT CAUSE:

6) Management Problem
A. Inadequate Administrative Control

22. DESCRIPTION OF CAUSE:

From reconstructing the most likely cause of the contaminated soil found during the removal of tank 100N-SS-27, it was observed that the tank condition did not indicate it to be a leaker.

There has been one reportable above ground spill at this location in 1988. It is assumed there have also been other, unreported, above ground spills at this re-fueling station. The gravel and porous backfill surrounding the tanks creates a natural pathway for surface spills, to the location where the contaminated soil was found.

1993/02/02

WHC-SD-EN-TI-136, Rev. 0

UNOFFICIAL COPY OCCURRENCE REPORT

Final Report (Incomplete)

Therefore, the cause is determined to be the result of inadequate administrative control of the servicing activities at this station in the past, resulting in spillage and consequent soil contamination.

23. EVALUATION: (By Facility Manager/Designee)

See item #29

24. IS FURTHER EVALUATION REQUIRED? : Yes [] No [X]

IF YES - BEFORE FURTHER OPERATION? : Yes [] No [X]

BY WHOM? :

BY WHEN? : --/--

25. CORRECTIVE ACTIONS:

(* = Date added/revised since final report was signed off)

1) Complete site drilling, soil sampling and field analysis of samples.

ACTIONEE: D.J. Watson (11120)

TARGET COMPLETION DATE: 08/01/92 COMPLETION DATE: 08/15/92

2) Scope remaining site remedial actions.

ACTIONEE: D.J. Watson (11120)

TARGET COMPLETION DATE: 01/31/93 COMPLETION DATE: 01/27/93

3) Complete soil sample laboratory analysis, review analysis, validate data and schedule any additional corrective actions that may be determined to be necessary at that time.

ACTIONEE: D.J. Watson (11120)

TARGET COMPLETION DATE: 12/01/92 COMPLETION DATE: 12/01/92

4) Implement remedial action schedule.

ACTIONEE: D.J. Watson (11120)

TARGET COMPLETION DATE: 03/31/93 COMPLETION DATE: --/--/--

1993/02/02 page

WHC-SD-EN-TI-136, Rev. O_{Final Report} UNOFFICIAL COPY (Incomplete) OCCURRENCE REPORT

5) Conclude document closure and notify Washington State Ecology department of closure.

ACTIONEE: D.J. Watson (11120)

TARGET COMPLETION DATE: 12/12/93

COMPLETION DATE: --/--/--

26. IMPACT ON ENVIRONMENT, SAFETY AND HEALTH:

Potential for environmental degradation.

27. PROGRAMMATIC IMPACT:

None.

28. IMPACT UPON CODES AND STANDARDS:

None.

29. FINAL EVALUATION AND LESSONS LEARNED:

The purpose of removing underground storage tanks having contained petroleum products in accordance with 40 CFR 280.71 is to remove inactive and/or leaking tanks from service and from the ground. The regulations also require the clean up of spills associated with the tanks. This is the fourth of twenty-seven tanks removed to date where soil contamination has been found.

TANK 100N-SS-27

The excavation and removal of tank 100N-SS-27 was completed on Dec. 18, 1990. Approximately 25 feet of associated piping was removed from the ground along with the tank. An inspection of the tank did not reveal any holes or cracks. Field sampling conducted following the removal of the tank indicated the presence of organics between it and the adjacent tank, 100N-SS-28. On January 11, 1991 additional soil was removed from between the tanks and found to be contaminated.

TANK 100N-SS-28

To further characterize and facilitate closure of the 100N-

1993/02/02

page

5

UNOFFICIAL COPY OCCURRENCE REPORT

Final Report
(Incomplete)

SS-27 site, tank 100N-SS-28 was removed in July 1991. At the time of the removal of 100N-SS-28, saturated soil was observed in the tank depression. There had been no petroleum in the 100N-SS-28 tank. The saturated soil was approximately 12 feet below land surface. The soil was removed and placed in four 55 gallon hazardous waste drums and disposed of as a hazardous waste. In July and August of 1991 groundwater samples were collected and tested for volatile organics. The analytical results indicated that no hydrocarbon contamination is present in the groundwater.

In September 1991 the UST site was excavated from 14 feet to 27 feet below the land surface. At that depth, contaminated soil was found. This soil was removed and placed in plastic sheeting, bermed, and barricaded.

In order to determine the extent of the petroleum contamination, it is planned to drill two wells, since the site may not be able to be clean closed. These wells are to be placed at the plume location and down gradient of the service station. This additional work is planned to be completed by mid-December 1993.

The corrective actions associated with this incident are also being tracked on occurrence report RL--WHC-WHC600EM-1990-0337.

30. SIMILAR OCCURRENCE REPORT NUMBERS:

RL--WHC-WHC600EM-1990-0337

31. DOE FACILITY REPRESENTATIVE INPUT:

This report has been reviewed and revised several times to clarify and correct mistakes. It has been reviewed and found to be acceptable at this time. The reviews have been done by both Charlie Loftis, DOE-RL site representative as well as by D.W. Templeton, Chief, Facility Surveillance Branch.

Entered by: Templeton, Dave W.

Date: 05/29/92

6

EVENT FACT SHEET AND CRITIQUE DISTRIBUTION LIST

WESTINGHOUSE HANFOR JR BELL ML BELL TD BLANKENSHIP RJ BLISS NC BOYTER WR BROOKSHER GD CARPENTER HF DAUGHERTY GT DUKELOW ML GRYGIEL JW HAGAN KR JORDAN JR KNIGHT EJ KOSIANCIC RE LERCH DM LUCOFF MA PAYNE RJ PYZEL WG RUFF WJ SCHLAUDER RG SLOCUM EF VOTAW WP WHITING JC WIBORG (2) CORRES CONTROL QSDM JUN 221990 "Entire Dist." 3	D_COMPANY R3-60 T5-50 R1-62 B3-04 R2-52 L4-01 H4-15 R2-53 R2-97 S6-65 G6-55 R2-56 B4-52 R2-36 B4-52 R2-34 S5-66 X0-42 R2-34 G1-35 B3-30 R3-09 R1-03 N1-18	US DEPARTMENT OF RE GERTON, DIRECT MANAGEMENT DIVIS RA HOLTEN, DIRECT SAFETY DIVISION RD IZATT, DIRECT RESTORATION DIVIS KH JACKSON, DIRECT SECURITY DIVISION JE MECCA, ACTING DIVISION A6-55 LC WILLIAMS, DIR MANAGEMENT DIVIS WE MCCLUNG AG KRASOPOULOS ADDITIONAL DISTR RA Evanoff MC Hughes MA Mihalic MR Morton KS Pedersen AD Poor RG Shuck DE Stocker DR Speer	ENERGY TOR, WASTE TON A6-80 TOR, ENVIRONMENT & A5-55 OR, ENVIRONMENTAL SION A6-95 CTOR, SAFEGUARDS & N A6-35 DIRECTOR, OPERATIONS ECTOR, PROJECT TON A5-13 A4-35 A5-55 BUTION G4-10 R1-15 R1-15 R2-77 S4-67 G4-11 S4-67 G4-11 R2-77
"Entire Dist." 3	T-1266	RG Shuck DE Stocker DR Speer GE Van Sickle DJ Watson VR Weil	S4-67 G4-11 R2-77 R1-15 X0-41 G4-04

IF THERE ARE ANY <u>CHANGES OR DELETIONS</u> TO THIS LIST, <u>PLEASE CALL</u> VICKI ON 3-1266. LIST UPDATED ON 6-5-90.

WHC-SD-EN-TI-136, Rev. 0 EVENT FACT SHEET

~	nı	JT	ъĸ	rT	OR	•	WHC
•	vı	11	\sim		UN	è	MITC

1.	Title: Leaking UST
2.	Reporting Organization: Decommissioning Engineering
3.	Division/Department/Project: Environmental/Hanford Restoration Oper.
4.	Number: D&D/100-01-90 5. Rev.: 0
6.	Date of Event/Time: 6/21/90, 2:00pm Date Discovered: 6/21/90
7.	Event Identification:
	A) Location of Event: 100-N Service Station (Tank 100-N-SS-27)
	B) Plant/Facility Status: Station was out-of-service for testing
	1 Alama Parilian Ton
	 Alarm: Facility Type (False Fire, CAM, CAS, etc.) Contamination, Internal
	 Regulatory Requirement Deposition, Over Exposure, etc.
	(CERCLA, RCRA, WDOE, DOE-RL, 6. Industrial Safety, Personnel
	DOE-HQ, etc.) Injury, First Aid, etc. 3. Operating Requirements (OSR, 7. Process Misrouting
	CPS, Tech Spec., Procedure 8. Utility System - Electrical,
	Administrative, etc.) Steam, Air, Water
	4. Release/Spread - Radioactive 9. Hoisting/Lifting Contamination/Hazardous 10. Other
	Material
	C) Event Type: 2 (40CFR280.43 [C])
	OSR/TS: Nonconformance [] Violation []
	CPS: Infraction [] Violation []
8.	Apparent Cause(s) of Event:
	Design [] Administrative Control []
	Personnel Error [] Procedure [] Material [] Other: [X] Tank age
9.	······································
7.	
	While preparing for routine UST Tightness Testing, the 100-N-SS-27 tank was determined to have a leak. The leak is in the top 10% of the tank
	volume (probably at the fill pipe to tank connection) as evidenced by
	satisfactory inventory control data for this tank (less than 1%
	discrepancy on the last 6 to 12 months). The total release of unleaded gasoline is estimated at less than 5 gallons occurring between 6/20/90
	(tank fill for testing) and 6/21/90 (discovery of leak).
	· · · · · · · · · · · · · · · · · · ·

10. <u>Consequences of Event:</u>

Small release of unleaded gasoline (less than 5 gallons)

11. Actions Taken (A) or Planned (B):

- 1. 24 hour WDOE notification (A)
- Remove tank contents (B 6/22/90)
 Followup notification to WDOE (B 7/12/90)
- 4. Permanent tank closure (B 6/21/91)

Tentative Disposition:

Event meets criteria for a Unusual Occurrence Report (UOR) Event meets criteria for a Critique

Undetermined: Revised EFS will be issued in 3 working days Above criteria not met: no further report

13. <u>Signatures:</u>

M.a. mhal C. 22.90

Approved/Date

ADC/UCNI Review Official

APPENDIX D

VALIDATED SAMPLE DATA

CONTENTS

Table	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. D-iv
182 Tanks (Sample Date 11/30/90)	•	•	•	•	•		•	•	•	•			•	•		•	•	•		. D-1
182 Caissons (Sample Date 4/5/91)	•	•	•	•	•	•			•	•	•			•	•		•	•	•	D-125
182 Caissons (Sample Date 4/26/92))	•	•	•	•	•	•										•	•	•	D-135
105 LFT (Sample Date 4/30/92)	•	•	•	•		•						•					•	•	•	D-157
100-N-SS-27 (Sample Date 12/18/90)	ļ		•			•	•	•			•	•	•	•	•		•		•	D-185
100-N-SS-28 (Sample Dates 7/16/91	an	d	7/	17	/9)1	•	•	•		•	•				•				D-225
100-N-SS-28 (Sample Date 4/29/92)	•	•			•		•	•	•	•	•		•		•	•				D-245
100-N Gas Station "Lust" (Sample D	at	e	9/	9/	92	2)				•										D-259

Table D-1. Validated Sample Information Sequence.

LOCATION	DATE	SAMPLES
Tank 182-N-1-DT	11/30/90	N-101 thru N-108
Tank 182-N-2-DT	11/30/90	N-109 thru N-116
Tank 182-N-3-DT	11/30/90	N-117 thru N-126, N-127*
Caisson 182-N-1-DT	03/05/91	MK-103
Caisson 182-N-2-DT	03/05/91	MK-102
Caisson 182-N-3-DT	03/05/91	MK-101, MK-105, MK-104*
Caisson 182-N-1-DT	03/26/92	B01GM3
Caisson 182-N-2-DT	03/26/92	B01GM1, B01GM2
Caisson 182-N-3-DT	03/26/92	B01GMO
Tank 105-N-LFT	12/07/90	N-128 thru N-133 (LOST)
Tank 105-N-LFT	03/30/92	B01GM4 thru B01GM8, B01GM9*
Tank 100-N-SS-27	12/18/90	27-101*, 27-102 thru 27-106
Tank 100-N-SS-28	07/16/91	B00ZN6,B00ZN7,B00ZN8*,B00ZN9*
Tank 100-N-SS-28	07/17/91	B00ZP0 thru B00ZP4, B00ZP5*, B00ZP6*
Tank 100-N-SS-28	04/29/92	B06D35*, B06D36, B06D37
Tank 100-N-SS-28 BOREHOLE	09/09/92	B076C4 thru B076C6, B076D0, B076C7*, B076C8*, B076C9*

* Denotes trip/equipment blanks

This table correlates sample numbers associated with each sample activity. All validated sample information in Appendix C follows the sequence of this table.

182 TANKS
Sample Date November 30, 1990

28600-91-032

From: Phone: Office of Sample Management

3-3419 MO-346/200W T6-08

Date:

April 8, 1991

Subject:

TRANSMITTAL OF VALIDATED DATA FOR THE UNDERGROUND

STORAGE TANK REMOVAL PROJECT (TRANS #1)

R. C. Roos H4 - 55To: cc: R. P. Henckel J. H. Kessner H4-55* T6-08* E. J. Kosiancic SO-61* K. S. Pedersen S4-67* R. G. Shuck S4-67* JAL File/LB *w/o enclosures

Validated sample data from the Underground Storage Tank Removal Project is being transmitted by the Office of Sample Management (OSM) for the Delivery Group N-101. The delivery group contains results for 33 soil samples which were analyzed by the Martin Marietta Energy Systems, Incorporated, K-25 Laboratory for volatile and semi-volatile organics.

The Office of Sample Management data validation procedure is a review of laboratory performance and implementation of applicable protocols. Subsequent technical data evaluation by project lead personnel should include a determination of the appropriateness of results from a standpoint of past history and present knowledge of the sample site.

If you have any questions, please contact me at the number listed above.

Scientist

tjn

Enclosure

Table 2. Sample Identification in Project 90-027

OSM Sample ID	Lab Sample ID	Lab File ID	Matrix	Comments
N-101	901206-019	NA.	Soil	Sample
	901213-028		Water	BNA Blank
	901211-004		Water	VOA Blank
N-102	901206-020	NA.	Soil	Sample
	901210-025		Water	VOA Blank
N-103	901206-021	NA	Soil	Sample
N-104	901206-022	NA	Soil	Sample
N-105	901206-023	NA	Soil	Sample
N-106	901206-024	NA.	Soil	Sample
N-107	901206-025	NA	Soil	Sample
N-107-MS	901206-026	NA	Soil	Matrix Spike
N-107-MSD	901206-027	NA	Soil	Matrix Spike
				Duplicate
N-108	901206-028	NA	Soil	Sample
N-109	901206-029	NA	Soil	Sample
N-110	901206-030	NA	Soil	Sample
N-111	901206-031	NA	Soil	Sample
N-112	901206-032	NA	Soil	Sample
N-113	901206-033	NA	Soil	Sample
N-114	901206-034	NA	Soil	Sample
N-115	901206-035	NA	Soil	Sample
N-116	901206-036	NA	Soil	Sample
	901214-083		Water	BNA Blank
N-117	901206-037	NA.	Soil	Sample
N-118	901206-038	NA	Soil	Sample
N-118-MS	901206-039	NA.	Soil	Matrix Spike
N-118-MSD	901206-040	NA	Soil	Matrix Spike
				Duplicate
N-119	901206-041	NA	Soil	Sample
N-120	901206-042	NA	Soil	Sample
N-121	901206-043	NA.	Soil	Sample
N-122	901206-044	NA	Soil	Sample
N-123	901206-045	NA	Soil	Sample
N-124	901206-046	NA	Soil	Sample
N-125	901206-047	NA.	Soil	Sample
N-125D	901206-048	NA.	Soil	Duplicate Sample
N-126	901206-049	NA.	Soil	Sample
N-127	901206-050	NA NA	Soil	Sample
242-101	901209-018	NA.	Soil	Sample
2.2 202	901218-067	143	Water	BNA Blank
242-102	901209-019	NA	Soil	Sample
242-102-MS	901209-019	NA NA	Soil	Sample
242-103	901209-021	NA.	Soil	Sample
242-103	901209-022	NA	Soil	-
242-104	901209-023			Sample
242-105-D	901209-023	NA NA	Soil	Sample
242-105-D 242-106		NA NA	Soil	Sample
₹47±100	901209-025	NA	Soil	Sample

OSM RCRA LEVEL C DATA ASSESSMENT

DATE 4/6/91 5	AMPLES/MA	TRIX <u>see</u>	attachm	ent
REVIEWED BY JA Lerch 1		- <u>all s</u>	amples ar	e soil
LABORATORY K-25		\geq		
CASE #	į			
SDG # N-101 (assigned by asm))			
DATA ASS	SESSMENT	SUMMARY		
QUALITY CONTROL CHECK ANAL	.YSIS <u>V</u>	<u>A</u> S	Semi VOA	
1. Holding time	_(×	
2. MS/MSD		<u> </u>	_×_	
3. <u>Duplicate Analysis</u>	_(<u> </u>	0	
4. Surrogate Recovery		<u> </u>	×	
5. Blank Analysis		<u> </u>	X	
6. Other - none				
7.				
8				
9	_			
10.				
<pre>0 = data had no problems X = data qualified due to mir M = data qualified due to maj</pre>			ta may be un	usable
OVERALL ASSESSSMENT: no major	Prob	lems - a	Il result	<u>tr</u>
ecceptable w/qualif	icatio	^		
	·	-		
NOTES: None				
·				

o Refer to the corresponding attachments for explanation of any problems.

Sample/Matrix Identification

Lab: K-25

SDG: H-101 (assigned by OSM)

17/6/11

	·
N-101	N-120
N-10Z	N-121
N-103	N-12Z
N-104	N-123
N-105	N-124
N-106	N-125
N-107	N-126
N-108	H-127
N-109	
N-110	242-101
N-111	242-102
N-112	242-103
N-113	242-104
N-114	242-105
N-115	242-106
N-116	√
N-117	* all samples are soil
N-118	
N-119	

RCRA LEVEL C QC
Name JA Lerch of Date 04/06/21
QC Check: Holding Time
COMMENTS: voa - all Holding time criteria met
Semivor-all 242- series samples extracted
10 days after receipt (water criteria is 7 days)
water criteria not applied to soils
ACTION: none
sample # constituent value/qual sample # constituent value/qual

1 of 6

DCDA	10	VCI	r	nc
<u>RCRA</u>	<u>L C</u>	<u> </u>	<u>.</u>	ŲΨ

Name JA Lerch of Date 04/06/91
Name <u>JA Lerch</u> Date <u>04/06/91</u> QC Check: <u>MS/MSD</u>
comments: see below for GC samples
VOA - all recoveries & RPD's within limits
SemiYOA- NIBMS + MSD - 4-nitrophenol MS 70R +
RPD entside of advisory limits, no indication of major problem
ACTION:-
ACTION: none - advisory limits

sample # constituent value/qual

voa spikes
N-107MS, N-107MSD

N-107MS, N-107MSD

Semivoa spites N-107MS, N-107MSD N-118MS, N-118MSD

2 of 6

RCRA LEVEL C QC
Name <u>JA Lerch</u> Date <u>04/06/91</u> QC Check: <u>Duplicate Analysis</u>
ac check: Duplicate Analysis
COMMENTS: <u>Duplicate analysis not required by protocol</u> (MS+MSD) satisfies with VOA, SemiVOA duplicates; RPD's ok
ACTION: none
sample # constituent value/qual sample # constituent value/qual
3 of 6

	RCRA LEVEL C QC
	Name JA Lerch Date 4/06/91
	QC Check: <u>Surrogate Recovery</u>
	comments: SemivoA - 2 surrogates out of control limits
	for N-126, 1 out for N-127; all other recoveries within limits for all samples
	VOA-all recoveries of for all samples
	ACTION: qualify associated results per
	Oban guidelines
SamiVOA	sample # constituent value/qual sample # constituent value/qual N-126 all J,UJ
	N-127 all JUJ
	<u>4</u> of <u>6</u>
	<u>. 01 6</u>

	RCRA LEVEL C QC
	Name JA Lorch / Date 04/06/91
	QC Check: Blanks
	comments: VOA - MeClz, acetone and several TIC's detected
	in voa blanks
	Semivor - benzoic acid, dethylphthalate, bis (z-ethylhexyl)phthalate,
	di-n-butylphthalate and several TIC's detected in blanks
	ACTION: qualify associated results as per OSM
	guidelines
- 1.1-1	sample # constituent value/qual sample # constituent value/qual
SemiVOA, VOA	TOWN YOUR TON
7 071	criterial applied for the VOA, + SemivOA
	compounds listed above and to TIC's and
	unknowns - see data
	report sheets for qualification

<u>5</u> of <u>6</u>

RCRA LEVEL C QC QC Check: Other comments: none ACTION: <u>none</u> sample # constituent value/qual | sample # constituent value/qual

6 of 6

January 29, 1991

Ms. Joan Kessner Westinghouse Hanford Company Office of Sample Management 2355 Stevens Drive Richland, Washington 99352

Dear Ms Kessner:

Analytical Results Package on Projects 90-027, Tank Farm Samples

Attached are the analytical results on sample from Project 90-027, Tank Farm Samples, received into the Analytical Chemistry Department (ACD) Laboratories on December 5, 6, 7, and 9, 1990. In accordance with agreements between the OSM and K-25 ACD, the protocol shown in Table 1 was utilized in performing these analyses. The sample identification for this project is shown in Table 2.

The results are reported on ACD's ANALIS report format, per letter dated December 20, 1990. All data quality objectives were satisfied on the project.

Semi-Volatiles (BNAs)

Samples received on the dates listed above were extracted and analyzed within the prescribed holding times. All surrogate standards criteria were within percent recovery acceptance limits. All DFTPP tune criteria were within acceptance criteria. All "CCC" and "SPCC" components met acceptance criteria for both the initial and continuing calibration check samples. All internal standard areas met water matrix acceptance criteria. All matrix spikes and matrix spike duplicates were within the acceptance requirements.

Volatiles (VOAs)

All surrogate standards criteria were within percent recovery acceptance limits. All BFB tune criteria were within acceptance criteria. All CCC and SPCC components met acceptance criteria for both the initial and continuing calibration check sample. All internal standard areas were within acceptance criteria for a water matrix. All matrix spikes and matrix spike duplicates were within the acceptance requirements.

Analytical Results Package on Projects 90-027, Tank Farm Samples- Continued

I certify that this data package is in compliance with the terms and conditions of the OSM's revised Statement of Work and letter dated December 20, 1990, both technically and for completeness, for other than conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Sincerely,

Clarence R. Kirkpatrick

Program Manager

Waste Management Analysis

Analytical Chemistry Department (K-25)

Department Manager

WHC-SD-EN-TI-136, Rev. 0 Table 1. Analytical Protocol used for Project 90-027

Analysis	Protocol		
A. Semi-Volatiles B. Volatiles	BNA (CLP) protocol VOA (CLP) protocol		

Analis ID: 901206-019

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-101

Customer: J. KESSNER/R. SHUCK

File ID: 10646

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

5.7

QA File Number: NA

[]: Result has been Corrected for Spike

CAS	,	ug/Kg	CAS			ug/Kg	
108-95-2	Phenoi	9800	106-47-8	4-Chloroaniline	• •••	9800	
111-44-4		980U	87-68-3	Hexachlorobutadiene			
			J. 22 J			9800	
95-57-8	2-Chlorophenol	980U	59-50-7	· · · · · · · · · · · · · · · · · · ·		980U	
541-73-1	1,3-Dichlorobenzene	980U	91-57-6	2-Methylnaphthalene		9800	
106-46-7	1,4-Dichlorobenzene	9800	77-47-4	Hexachlorocyclopentadiene		980u	
100-51-6	Benzyl Alcohol	980U	88-06-2	2,4,6-Trichlorophenol		980U	
95-50-1	1,2-Dichlorobenzene	980U	95-95-4	2,4,5-Trichlorophenol		4700U	
95-48-7	2-Hethylphenol	9800	91-58-7	2-Chioronaphthaiene		9 800	
108-60-1	bis(2-Chloroisopropyl)ether	980U	88-74-4	2-Nitroaniline		4700U	
106-44-5	4-Methylphenol	980U	131-11-3	Dimethylphthalate		980U	
621-64-7	N-Nitroso-di-n-propylamine	980U	208-96-8	Acenaphthylene		980U	
67-72-1	Hexachloroethane	9800	99-09-2	3-Nitroaniline		4700U	
98-95-3	Nitrobenzene	9800	83-32-9	Acenaphthene		980U	
78-59-1	Isophorone	9800	51-28-5	2,4-Dinitrophenol		4700U	
88-75-5	2-Nitrophenol	9800	100-02-7	4-Nitrophenol		4700U	
105-67-9	2,4-Dimethylphenol	9800	132-64-9	Dibenzofuran		9800	
65-85-0	Benzoic Acid	4700u	121-14-2	2,4-Dinitrotoluene		9 800	
111-91-1	bis(2-Chloroethoxy)methane	9800	606-20-2	2,6-Dinitrotoluene		980U	
120-83-2	2,4-Dichlorophenol	980U	84-66-2	Diethylphthalate 4	780	-150-JD-	u
120-82-1	1,2,4-Trichlorobenzene	980U	7005-72-3	4-Chlorophenyl-phenylether		980U	
91-20-3	Naphthalene	980U		Fluorene		980U	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

15/06/91

Page 2 of 2

Analis ID: 901206-019

Customer Sample ID: N-101

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10646

Sample Matrix: SOIL Requisition Number:

Instrument ID: 5970#3

Date Sample Received: 6-DEC-1990

Authorized By: D. C. Canada

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

5.7

OA File Number: NA

Associated Blank: 901213-028

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
*********	***************************************		•••••	••••••	•••••
100-01-6	4-Nitroaniline	4700U	53-70-3	Dibenz(a,h)anthracene	9800
534-52-1	4,6-Dinitro-2-methylphenol	4700U	191-24-2	Benzo(g,h,i)perylene	980U
86-30-6	N-Witrosodiphenylamine	9800			
101-55-3	4-Bromophenyl-phenylether	9800			
118-74-1	Hexach torobenzene	9800		•	
87-86-5	Pentachi orophenol	4700U			
85-01-8	Phenanthrene	9800			
120-12-7	Anthracene	9800			
84-74-2	Di-n-butylphthalate	4200°Q	u		
206-44-0	Fluoranthene	9800			
129-00-0	Pyrene	9800			
85-68-7	Butylbenzylphthalate	980U			
91-94-1	3,3'-Dichlorobenzidine	19000			
56-55-3	Benzo(a)anthracene	980U			
117-81-7	bis(2-Ethylhexyl)phthalate	400 JB-	980 U		
218-01-9	Chrysene	9800			
117-84-0	Di-n-octylphthalate	9800			
205-99-2	Benzo(b)fluoranthene	980U			
207-08-9	Benzo(k)fluoranthene	9800			
50-32-8	Benzo(a)pyrene	980U			
193-39-5	Indeno(1,2,3-cd)pyrene	9800			

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-019	Customer Sample ID: N-101
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10646
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 13-DEC-1990
% Moisture: not dec dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) <u>SoxH</u>	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units
Number TICs found: <u>15</u>	(ug/L or ug/Kg): <u>ug/Kg</u>

	S NUMBER	COMPOUND NAME	RT	EST. CONC.	
		2-Pentanone, 4-hydroxy-4-methy	5.91		•
		2-Pyrrolidinone, 1-methyl-	7.82		
_		Unknown	12.50	800	J
_		Phenol,(1,1-dimethylethyl)-4-m	46.47	450	<u> </u>
		Unknown	17.06-		L-18-
		Unknown	1 -18.08	1900	JB-
7	17851-53-5	1,2-Benzenedicarboxylic acid,b	21.30	860	JB
		Unknown (Hydrocarbon)	21.69	410	- √8 -
_		Unknown	21,96	420	J
		Unknown (Hydrocarbon)	23.74	590	J
11		Unknown	24.11	570	J
		Unknown (sat'd Hydrocarbon)	25.61	1200-	-√8-
		Unknown (sat'd Hydrocarbon)	26,49	1200	19
		Unknown_(Hydrocarbon)	27.78	2100	J
15		Unknown (sat'd Hydrocarbon)	28.13 	630	_√8~
16			1		l
			1		
18					1
19			1		
			L		
22			L		
23			1		
24					
25					
27]1		
			1		
30.			1 1		

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- NO Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Page 1 of 1

Analis ID: 901206-019

Customer Sample ID: N-101

Customer: J. KESSNER/R. SHUCK Laboratory: Organic Mass Spectroscopy Laboratory

File ID: 07606

Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP Dilution Factor: 1.0

Percent Moisture:

Analyst: GL HUDDLESTON

Percent Moisture (decanted):

Associated Blank: 901211-004

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	•••••	••••••	***************************************	• • • • • • • • • • • • • • • • • • • •
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5U
74-83-9	Bromomethane	110	71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 u	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	Su
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	5 U	108-88-3	Toluene	50
540-59-0	1,2-Dichloroethene (total)	5U	108-90-7	Chlorobenzene	SU
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	, 5 U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5ช			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5 u			
78-87-5	1,2-Dichloropropane	SU			
10061-01-5	cis-1,3-Dichloropropene	5U			
79-01-6	Trichloroethene	5 U			
124-48-1	Dibromochloromethane	Su			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-102

Customer: J. KESSNER/R. SHUCK

File ID: 10647

Sample Matrix: SOIL

Instrument ID: 5970#3 Authorized By: D. C. Canada

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Moisture:

7.7

Dilution Factor:

Analyst: C MEEHAN

Percent Moisture (decanted):

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg		CAS		ug/Kg	
•••••			•••••		•••••	******************	-27.73	
108-95-2	Phenol		990U		106-47-8	4-Chloroaniline	9900	
111-44-4	bis(2-Chloroethyl)ether		9900		87-68-3	Hexach Lorobutadiene	990U	
95-57-8	2-Chlorophenol		990U		59-50-7	4-Chloro-3-methylphenol	990u	
541-73-1	1,3-Dichlorobenzene		990U		91-57-6	- •	990u	
106-46-7	1,4-Dichlorobenzene		9 90U		77-47-4		990u	
100-51-6	Benzyl Alcohol		990U		88-06-2	2,4,6-Trichlorophenol	9900	
95-50-1	1,2-Dichlorobenzene		990U		95-95-4	2,4,5-Trichlorophenol	4800U	
95-48-7	2-Methylphenol .		990U		91-58-7	• •	9900	
108-60-1	bis(2-Chloroisopropyl)ether		990U		88-74-4		4800U	
106-44-5	4-Methylphenol		990U		131-11-3	Dimethylphthalate	9900	
621-64-7	N-Nitroso-di-n-propylamine		9900		208-96-8	Acenaphthylene	990U	
67-72-1	Hexachloroethane		990U			3-Nitroaniline	4800U	
98-95-3	Nitrobenzene		990U		83-32-9	Acenaphthene		
78-59-1	Isophorone		990u		51-28-5		990U	
88-75-5	2-Nitrophenol		9900			4-Nitrophenol	4800U	
105-67-9	2,4-Dimethylphenol		990u		132-64-9	Dibenzofuran	4800U	
65-85-0		990	180 -10-	11		- · - · - ·	990U	
111-91-1	bis(2-Chloroethoxy)methane	,	9900	•		2,4-Dinitrotoluene	990u	
120-83-2	2,4-Dichlorophenol		990U			2,6-Dinitrotoluene	9900	
120-82-1	•						990 -200 JB	u
91-20-3	1,2,4-Trichlorobenzene		9900		7005-72-3	4-Chlorophenyl-phenylether	9900	
71-20-3	Naphthalene .		990U		86-73-7	Fluorene	9900	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

File ID: 10647

Authorized By: D. C. Canada

Instrument ID: 5970#3

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-102

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

7.7

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture: Percent Moisture (decanted):

Dilution Factor:

1.0 Analyst: C MEEHAN

QA File Number: NA

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS			ug/Kg
*********		••••••		•••	***************************************	•••••
100-01-6		48000	53-70	0-3	Dibenz(a,h)anthracene	990U
534-52-1	4,6-Dinitro-2-methylphenol	4800U	191-24	4-2	Benzo(g,h,i)perylene	990U
86-30-6	N-Nitrosodiphenylamine	9900				
101-55-3	4-Bromophenyl-phenylether	990U				
118-74-1	Hexachlorobenzene	990U				
87-86-5	Pentachlorophenol	4800U				
85-01-8	Phenanthrene	990U				
120-12-7	Anthracene	9900				
84-74-2	Di-n-butylphthalate	3200 😮	u			
206-44-0	Fluoranthene	9900				
129-00-0	Pyrene	990U				
85-68-7	Butylbenzylphthalate	9900				
91-94-1	3,3'-Dichlorobenzidine	20000				
56-55-3	Benzo(a)anthracene	990U				
117-81-7	bis(2-Ethylhexyl)phthalate	-420-√0- -	990 U			
218-01-9	Chrysene	990u	.,,			
117-84-0	Di-n-octylphthalate	9900				
205-99-2	Benzo(b)fluoranthene	9 900				
207-08-9	Benzo(k)fluoranthene	990U				
50-32-8	Benzo(a)pyrene	9900				
193-39-5	Indeno(1,2,3-cd)pyrene	990U				

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis 10: 901206-020	Customer Sample ID: N-102
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10647
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 13-DEC-1990
% Moisture: not dec dec	Date Extracted: 12-DEC-1990
Extraction: (Sepf/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units
Number TICs found: 14	(ua/L or ua/Ka): ua/Ka

CAS NUMBER	•	RT	EST. CONC.	0
	2-2 2-Pentanone, 4-hydroxy-4-methy	======== - 5.99-		
	0-4 2-Pyrrolidinone, 1-methyl-	9.83	550	
	6-5 Phenol (1,1-dimethylethyl)-4-m	16.47	510	-40-
4.	Unknown	1 -18:00	1800	- 18-
·	3-51 1,2-Benzenedicarboxylic acid,b	-21,31	- 600	- 18 -
6		25.61	760	
7		26.00	460	J
8		1 -26,49-1	980	
9	<u> </u>	27.70	2100	J
10		-28,13		 48-
11		28.91	420	1_18_
12	Unknown (sat'd Hydrocarbon)	30.55	410	J
13		32.61	400	IJ
14		33.75	420	IJ
15				1
16		1 1		1
17				1
18				1
19				1
20		<u> </u>		1
21		1	<u> </u>	
22		<u> </u>	<u> </u>	
23		<u> </u>		<u> </u>
24				1
25				<u></u>
26				L
27			<u></u>	<u> </u>
28		<u> </u>	<u> </u>	
29			<u> </u>	<u> </u>
30				<u> </u>

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

/4/6/a,

Customer Sample ID: N-102

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07598

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP Percent Moisture:

Analysis Procedure Number: VOA (CLP) NDP

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[]: Result has been Corrected for Spike

CAS			ug/Kg		CAS		ug/Kg
••••••			• • • • • • • •		•••••		•••••
74-87-3	Chloromethane		110		79-00-5	1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane		110		71-43-2	Benzene	5 u
75-01-4	Vinyl Chloride		110		10061-02-6	trans-1,3-Dichloropropene	Su
75-00-3	Chloroethane		110			Bromoform	Su
75-09-2	Methylene Chloride	5	-2-48	U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone		30 %	u		2-Hexanone	110
75-15-0	Carbon Disulfide		SU		127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene		5U		79-34-5	1,1,2,2-Tetrachloroethane	5u
75-34-3	1,1-Dichloroethane		5U		108-88-3		5U
540-59-0	1,2-Dichloroethene (total)		5 U		108-90-7	Chlorobenzene	Su
67-66-3	Chloroform		5 U		100-41-4	Ethylbenzene	5u
107-06-2	1,2-Dichloroethane		5 U		100-42-5		5u
78-93-3	2-Butanone		110			Xylene (total)	5U
71-55-6	1,1,1-Trichloroethane		5 u			•	
56-23-5	Carbon Tetrachloride		5 U				
108-05-4	Vinyl Acetate		110			,	
75-27-4	Bromodichloromethane		5 U			11	
78-87-5	1,2-Dichloropropane		5 u			40	
	cis-1,3-Dichloropropene		รบ			// 4/. 1	
	Trichloroethene		5U			V '16/q,	
124-48-1			5 u			. 111	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0

Page 1 of 2

AnaLIS ID: 901206-021

Customer Sample ID: N-103

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10648

Sample Matrix: SOIL

Instrument 10: 5970#3

Requisition Number:
Date Sample Received: 6-DEC-1990

Authorized By: D. C. Canada Date Samp

•

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture:

Dilution factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

QA File Number: NA

Associated Blank: 901213-028

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg	
•••••	***************************************	•••••	••••••	***************************************	••••••	
108-95-2	Phenol	1000U	106-47-8	4-Chloroaniline	10 00U	
111-44-4	bis(2-Chloroethyl)ether	10000	87-68-3	Mexachlorobutadiene	1000U	
95-57-8	2-Chlorophenol	1000U	59-50-7	4-Chloro-3-methylphenol	1000U	
541-73-1	1,3-Dichlorobenzene	1000U	91-57-6	2-Methylnaphthalene	10000	
106-46-7	1,4-Dichlorobenzene	1000U	77-47-4	Hexachlorocyclopentadiene	1000U	
100-51-6	Benzyl Alcohol	1000U	88-06-2	2,4,6-Trichtorophenol	10000	
95-50-1	1,2-Dichlorobenzene	1000U	95-95-4	2,4,5-Trichtorophenol	5100u	
95-48-7	2-Methylphenol	1000U	91-58-7	2-Chloronaphthalene	10000	
108-60-1	bis(2-Chloroisopropyl)ether	1000U	88-74-4	2-Nitroaniline	5100U	
106-44-5	4-Hethylphenol	1000U	131-11-3	Dimethylphthalate	1000u	
621-64-7	N-Nitroso-di-n-propylamine	10000	208-96-8	Acenaph thy lene	10000	
67-72-1	Hexachloroethane	1000U	99-09-2	3-Mitroaniline	5100U	
98-95-3	Nitrobenzene	1000U	83-32-9	Acenaphthene	1000U	
78-59-1	Isophorone	1000U	51-28-5	2,4-Dinitrophenol	5100U	
88-75-5	2-Nitrophenol	10000	100-02-7	4-Nitrophenol	5100U	
105-67-9	2,4-Dimethylphenol	10000	132-64-9	Dibenzofuran	10000	
65-85-0	Benzoic Acid	5100U	121-14-2	2,4-Dinitrotoluene	1000U	
111-91-1	bis(2-Chloroethoxy)methane	10000	606-20-2	2,6-Dinitrotoluene	1000U	
120-83-2	2,4-Dichlorophenol	1000U	84-66-2	Diethylphthalate	1000 450 10	u
120-82-1	1,2,4-Trichlorobenzene	10000	7005-72-3	4-Chlorophenyl-phenylether	1000U	
91-20-3	Naphthalene	10000		Fluorene	10000	

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

14/6/91

Page 2 of 2

Analis ID: 901206-021

Customer Sample ID: N-103

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10648

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

5.5

CAS		ug/Kg	CAS		ug/Kg
	****************	•••••	•••••		•••••
100-01-6	4-Nitroaniline	5100U	53-70-3	Dibenz(a,h)anthracene	1000U
534-52-1	4,6-Dinitro-2-methylphenol	51000	191-24-2	Benzo(g,h,i)perylene	10000
86-30-6	N-Nitrosodiphenylamine	10000			
101-55-3	4-Bromophenyl-phenylether	1000U			
118-74-1	Hexach Lorobenzene	1000U			
87-86-5	Pentachlorophenol	5100U			
85-01-8	Phenanthrene	1000U			
120-12-7	Anthracene	1000U			
84-74-2	Di-n-butylphthalate	2900 %	U		
206-44-0	Fluoranthene	1000U			
129-00-0	Pyrene	10000			
85-68-7	Butylbenzylphthalate	10000			
91-94-1	3,3'-Dichlorobenzidine	21000			
56-55-3	Benzo(a)anthracene	10000			
117-81-7	bis(2-Ethylhexyl)phthalate	-310-38-	1000 U		
218-01-9	Chrysene	10000			
117-84-0	Di-n-octylphthalate	10000			
205-99-2	Benzo(b)fluoranthene	10000			
207-08-9	8enzo(k)fluoranthene	1000U			
50-32-8	Benzo(a)pyrene	10000			
193-39-5	Indeno(1,2,3-cd)pyrene	1000U			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-021	Customer Sample ID: N-103
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10648
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 13-DEC-1990
% Hoisture: not dec5.5 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) <u>SoxH</u>	pH:
GPC Cleanup: (Y/N) <u>N</u>	
	Concentration Units
Number TICs found: 8	(ug/L or ug/Kg): <u>ug/Kg</u>

CAS NUMBE	COMPOUND NAME	Î RT	EST. CONC.	Q
	42-2 2-Pentanone, 4-hydroxy-4-methy	5:94	"	•
2		12.50	700	1 1
	53-5 1,2-Benzenedicarboxylic acid,b	21.30	470	
4		23.74	470	1_0
5		1 -26.61	970	1-18-
6		-26,49	870	1-18-
7		27.72	2300	IJ
8		28.12	450	1-48-
9				1
10	1			1
11	1			
12				Ī
13		1		1
14				ı
15				i
16				Ĺ
17		L		L
18	ļ	1		1
19				
20		1		1
21		1		ı
22		1		l
23		1		Ī
24	1			1
25				Ī
26		1		Ī
27				i
28		1		i .
29		1		i
30.	<u> </u>	1		

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

/1/6/a1

AnaLIS ID: 901206-021

Customer Sample ID: N-103

Laboratory: Organic Hass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07599

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[] : Result has been Corrected for Spike

CAS	•	ug/Kg		CAS		ug/Kg
7/ 07 7		********		•••••		•••••
74-87-3		110			1,1,2-Trichloroethane	5u
74-83-9	0. dinama (1101.16	110		71-43-2	Benzene	5 U
	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	5 U
	Chloroethane	110		75-25-2	Bromoform	Su
75-09-2	Methylene Chloride	5 -2-18-	u	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	28 %.	u		2-Hexanone	110
75-15-0	Carbon Disulfide	50		127-18-4	Tetrachloroethene	5u
75-35-4	1,1-Dichloroethene	ริบ		79-34-5	1,1,2,2-Tetrachloroethane	5u
75-34-3	1,1-Dichloroethane	5 u		108-88-3		5u
540-59-0	1,2-Dichloroethene (total)	Su		108-90-7	Chlorobenzene	Su
	Chloroform	Su			Ethylbenzene	Su
107-06-2	1,2-Dichloroethane	5บ		100-42-5		5u
78-93-3	2-Butanone	110			Xylene (total)	5U
71-55-6	1,1,1-Trichloroethane	Su			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,
	Carbon Tetrachloride	5U				
108-05-4	Vinyl Acetate	110				
	Bromodichloromethane	Su				
78-87-5	1,2-Dichloropropane	5u			. /	
	cis-1,3-Dichloropropene	5U			11.	
	Trichloroethene	Su			18	
	Dibromochloromethane	Su		•	/ 4/ ,	
	ng Qualifiers:	30			16/91	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 ANALYSIS DATA REPORT

Page 1 of 2

Analis ID: 901206-022

Customer Sample ID: N-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File 1D: 10649

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Hoisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[]: Result has been Corrected for Spike

5.2

CAS			ug/Kg		CAS			ug/Kg	
•••••		• •••	•••••		•••••	••••••	• ••	•••••	
108-95-2	Phenol		10000		106-47-8	4-Chloroaniline		1000U	
111-44-4	bis(2-Chloroethyl)ether		10000		87-68-3	Mexachlorobutadiene		10000	
95-57-8	2-Chlorophenol		1000U		59-50-7	4-Chloro-3-methylphenol		10000	
541-73-1	1,3-Dichlorobenzene		10000		91-57-6	2-Methylnaphthalene		1000U	
106-46-7	1,4-Dichlorobenzene		10000		77-47-4	Hexachlorocyclopentadiene		1000U	
100-51-6	Benzyl Alcohol		10000		88-06-2	2,4,6-Trichlorophenol		10000	
95-50-1	1,2-Dichlorobenzene		10000		95-95-4	2,4,5-Trichlorophenol		4900U	
95-48-7	2-Methylphenol		1000U		91-58-7	2-Chloronaphthalene		1000U	
108-60-1	bis(2-Chloroisopropyl)ether		1000U		88-74-4	2-Nitroaniline		4900U	
106-44-5	4-Hethylphenol		10000		131-11-3	Dimethylphthalate		1000U	
621-64-7	N-Nitroso-di-n-propylamine		1000U		208-96-8	Acenaphthylene		10000	
67-72-1	Hexachloroethane		10000		99-09-2	3-Nitroaniline		4900U	
98-95-3	Ni trobenzene		10000		83-32-9	Acenaphthene		1000U	
78-59-1	Isophorone		10000		51-28-5	2,4-Dinitrophenol		4900U	
88-75-5	2-Nitrophenol		10000		100-02-7	4-Nitrophenol		4900U	
105-67-9	2,4-Dimethylphenol		10000		132-64-9	Dibenzofuran		10000	
65-85-0	Benzoic Acid	1000	120 Jb	u	121-14-2	2,4-Dinitrotoluene		1000U	
111-91-1	bis(2-Chloroethoxy)methane		10000			2,6-Dinitrotoluene		10000	
120-83-2	2.4-Dichlorophenol		10000		84-66-2	Diethylphthalate	1000	-200-48-	u
120-82-1	1,2,4-Trichlorobenzene		10000		7005-72-3	4-Chlorophenyl-phenylether		10000	
91-20-3	• •		10000		86-73-7	Fluorene		10000	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-022

Customer Sample ID: N-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL File ID: 10649

Instrument ID: 5970#3 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 13-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Moisture:

5.2

Dilution Factor:

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS	•	ug/Kg	CAS		ug/Kg
100-01-6	4-Nitroaniline	4900U	53-70-3	Dibenz(a,h)anthracene	10000
		4900U		Benzo(g,h,i)perylene	10000
534-52-1			171-24-2	Benzo(g,n,1)perytene	10000
86-30-6	N-Nitrosodiphenylamine	10000			
101-55-3	· · · · · · · · · · · · · · · · · · ·	1000U			
118-74-1	Hexachlorobenzene	10000			
87-86-5	Pentachlorophenol	4900U			
85-01-8	Phenanthrene	10000			
120-12-7	Anthracene	1000U			
84-74-2	Di-n-butylphthalate	2600 %	u		
206-44-0	Fluoranthene	10000			
129-00-0	Pyrene	10000			
85-68-7	Butylbenzylphthalate	10000			
91-94-1	3,3'-Dichlorobenzidine	20000			
56-55-3	Benzo(a)anthracene	10000			
117-81-7	bis(2-Ethylhexyl)phthalate	870-JB-	1000 U		
218-01-9	Chrysene	10000			
117-84-0	Di-n-octylphthalate	10000			
205-99-2	Benzo(b)fluoranthene	10000			
207-08-9	Benzo(k)fluoranthene	10000		/	
50-32-8	Benzo(a)pyrene	10000		11	
193-39-5	Indeno(1,2,3-cd)pyrene	10000		10	
Data Reporti	ing Qualifiers:			04/6/91	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-022	Customer Sample ID: N-104_
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: <u>SOIL</u>	File ID: 10649
Level: (low/med): <u>LOW</u>	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 13-DEC-1990
% Moisture: not dec5.2 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) <u>SoxH</u>	pH:
GPC Cleanup: (Y/N) <u>N</u>	

Number TICs found: 16

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	**************************	**********	**********	******
	2-Pentanone, 4-hydroxy-4-methy	5. 04	16000	-JAB-
2. 872-50-4	2-Pyrrolidinone, 1-methyl-	7.82	430	₩-
3	Unknown	12.50	740	J
4. 25013-16-5	Phenol,(1,1-dimethylethyl)-4-m	16.45	470-	-48-
5	Unknown (Alkyl Hydrocarbon)	19.44	560	J
6. 17851-53-5	1,2-Benzenedicarboxylic acid,b	-21,30 -	530	-√8 -
7	Unknown (sat'd Hydrocarbon)	-21.69	450	-√0-
8	Unknown	21.94	630	1
	Unknown (Alkyl Hydrocarbon)	-22.73	410	- √8-
10	Unknown (Alkyl Hydrocarbon)	23.74	500	-18-
11	Unknown	24.11	440	1
12	Unknown (sat'd Hydrocarbon)	25_61		<u> </u>
13	Unknown	25.99		J
14	Unknown (sat'd Hydrocarbon)	26.49		<u> </u>
	Unknown	27.74	2400	1
16	Unknown (sat'd Hydrocarbon)	-28.12	550	
17				
18				
19				-
20				
21				
22				
23				
24				
		 		
25				
27				
28				
			 !	
30.				

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

1/4/6/41

Customer Sample ID: N-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07600

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[]: Result has been Corrected for Spike

5

CAS		ug/Kg		CAS		ug/Kg
•		•••••		••••••	***************************************	•••••
74-87-3	Chloromethane	110		79-00-5	1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	110		71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	5U
75-00-3	Chloroethane	110		75-25-2	Bromoform	5 U
75-09-2	Methylene Chioride	5 -2-vo	u	108-10-1	4-Hethyl-2-pentanone	110
67-64-1	Acetone	27 %	u	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U		127-18-4	Tetrachloroethene	5 u
75-35-4	1,1-Dichloroethene	50		79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	5U		108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	SU		108-90-7	Chlorobenzene	SU
67-66-3	Chloroform	5 U		100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	5 U		100-42-5	Styrene	5 U
78-93-3	2-Butanone	110		1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5 u				
56-23-5	Carbon Tetrachloride	5 U				
108-05-4	Vinyl Acetate	110				
75-27-4	Bromodichloromethane	5 U			,	
78-87-5	1,2-Dichloropropane	5 u			1 1.	
10061-01-5	cis-1,3-Dichloropropene	5 u			18	
79-01-6	Trichloroethene	5 U			14/21	
124-48-1	Dibromochloromethane	5 U			0 76/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-023

Customer Sample ID: N-105

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10652

Sample Hatrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

5.0

QA File Number: NA

CAS		ug/Kg	CAS		ug/Kg	
		•• ••••••	********	***********************	• ••••••	
108-95-2		9800	106-47-8	4-Chloroaniline	9800	1
111-44-4	bis(2-Chloroethyl)ether	980U	87-68-3	Hexachlorobutadiene	9800	1
95-57-8	2-Chlorophenol	980U	59-50-7	4-Chioro-3-methylphenol	9800	1
541-73-1	1,3-Dichlorobenzene	980U	91-57-6	2-Methylnaphthalene	9800	ı
106-46-7	1,4-Dichlorobenzene	980U	77-47-4	Hexachlorocyclopentadiene	9800	!
100-51-6	Benzyl Alcohol	980U	88-06-2	2,4,6-Trichlorophenol	9800	
95-50-1	1,2-Dichlorobenzene	980U	95-95-4	2,4,5-Trichtorophenol	4700u	
95-48-7	2-Methylphenol	980U		2-Chloronaphthalene	9800	
108-60-1	bis(2-Chloroisopropyl)ether	980U	88-74-4	2-Nitroaniline	4700U	
106-44-5	4-Methylphenol	980U	131-11-3	Dimethylphthalate	9800	
621-64-7	N-Nitroso-di-n-propylamine	9800	208-96-8	Acenaphthylene	9 80U	
67-72-1	Hexachioroethane	980U	99-09-2	3-Nitroaniline	4700u	
98-95-3	Nitrobenzene	980U	83-32-9	Acenaphthene	9800	
78-59-1	Isophorone	980U	51-28-5	2,4-Dinitrophenol	4700U	
88-75-5	2-Nitrophenol	980u	100-02-7	4-Nitrophenol	4700U	
105-67-9	2,4-Dimethylphenol	980U	132-64-9	Dibenzofuran	9800	ı
65-85-0	Benzoic Acid	980 -270 VB L	人 121-14-2	2,4-Dinitrotoluene	980u	
111-91-1	bis(2-Chloroethoxy)methane	980U	606-20-2	2,6-Dinitrotoluene	9800	!
120-83-2	2,4-Dichlorophenol	980∪		_	280 -220 -Ja -	u
120-82-1	1,2,4-Trichlorobenzene	9800		4-Chlorophenyl-phenylether	9800	
91-20-3	Naphthalene	980U	86-73-7		9800	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-023

Customer Sample ID: N-105

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10652

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

5.0

Analyst: C MEEHAN

QA file Number: NA

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS	•	ug/Kg
100-01-6	4-Nitroaniline	4700U	53-70-3	Dibenz(a,h)anthracene	9800
534-52-1	4,6-Dinitro-2-methylphenol	4700U	191-24-2	Benzo(g,h,i)perylene	980U
86-30-6	N-Nitrosodiphenylamine	9800			
101-55-3	4-Bromophenyl-phenylether	980U			
118-74-1	Hexachlorobenzene	980U			
87-86-5	Pentachlorophenol	4700U			
85-01-8	Phenanthrene	980U			
120-12-7	Anthracene	9800			
84-74-2	Di-n-butylphthalate	3600 ₺	u		
206-44-0	Fluoranthene	9800			
129-00-0	Pyrene	980U		•	
85-68-7	Butylbenzylphthalate	9800			
91-94-1	3,3'-Dichlorobenzidine	20000			
56-55-3	Benzo(a)anthracene	9800			
117-81-7	bis(2-Ethylhexyl)phthalate	560 J8 -	980 U		
218-01-9	Chrysene	9800			
117-84-0	Di-n-octylphthalate	9800			
205-99-2	Benzo(b)fluoranthene	980U		/	
207-08-9	Benzo(k)fluoranthene	980U		11	
50-32-8	Benzo(a)pyrene	9800		10	
193-39-5	Indeno(1,2,3-cd)pyrene	9800		0 46/9,	
Data Reporti	ng Qualifiers:			/ 1'	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-023	Customer Sample ID: N-105
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK
Sample Matrix: SOIL	File ID: 10652
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec5.0 dec	Date Extracted: 12-DEC-1990
Extraction: (Sepf/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
• =	Concentration Units

Number TICs found: 13

(ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	a
**********	*******************************			*******
1. 123-42-7	2-Pentanone, 4-hydroxy-4-methy	-5.93	19000	-JAB-
2.	Unknown	12.56	470	J
3. 25013-16-	Phenol,(1,1-dimethylethyl)-4-m	16,44	410	- 10 -
	1,2-Benzenedicarboxylic acid,b	- 21.29	800_	18 ~
5	Unknown (sat'd Hydrocarbon)	21.68	450	- 80-
6	Unknown (Alkyl Hydrocarbon)	-23,73 -	4.70_	-18-
7	Unknown	24.10	500	l J
8	Unknown (sat'd Hydrocarbon)	-25.60 -	1100	 18 _
9.	Unknown (Alkyl Hydrocarbon)		1100	 ↓8 -
10.	Unknown	27.71	2400	J
11	Unknown (sat'd Hydrocarbon)	28.12	610	1-18-
12	Unknown (sat'd Hydrocarbon)	-28.90	410	 √8 ~
13	Unknown	33.88	570_	1
14	1	1	1	1
15.		1	1	1
16		1	1	1
17			i i	1
18		1	l	ì
19		Ī	İ	
20	1	1	1	1
	1	1	İ	1
21	1		1	1
23		1		1
24	1		1	1
25	<u> </u>	1	ı	1
26		i	1	ī
27.	1	1	1	1
28		1	1	1
29	1		1	1
30.		<u> </u>	<u> </u>	1

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aidol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Page 1 of 1

ANALYSIS DATA REPORT

Analis ID: 901206-023

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-105

Customer: J. KESSNER/R. SHUCK

File ID: 07607 Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NOP

Percent Hoisture: 5

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

[]: Result has been Corrected for Spike

QA File Number: NA

CAS		ug/Kg		CAS		ug/Kg
74-87-3		110			1,1,2-Trichloroethane	Su
74-83-9	Bromomethane	110		71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	5U
75-00-3	Chloroethane	110		75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 t +	u	108-10-1	4-Hethyl-2-pentanone	110
67-64-1	Acetone	110		591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U		127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 u		79-34-5	1,1,2,2-Tetrachloroethane	5u
75-34-3	1,1-Dichloroethane	Su		108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	50		108-90-7	Chlorobenzene	SU
67-66-3	Chloroform	5 u		100-41-4	Ethylbenzene	5 u
107-06-2	1,2-Dichloroethane	50		100-42-5	Styrene	5 U
78-93-3	2-Butanone	110		1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5บ				
56-23-5	Carbon Tetrachloride	SU				
108-05-4	Vinyl Acetate	110				
75-27-4	Bromodichloromethane	5บ				
78-87-5	1,2-Dichloropropane	5 U				
10061-01-5	cis-1,3-Dichloropropene	SU			111	
79-01-6	Trichloroethene	5 U			1/14/6/2.	
124-48-1	Dibromochloromethane	5 U			0 /0/41	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-106

Customer: J. KESSNER/R. SHUCK

File ID: 10653

Sample Matrix: SOIL

Instrument 10: 5970#3

Authorized By: D. C. Canada

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture:

Dilution Factor:

2.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

3.3

CAS		ug/Kg	CAS			ug/Kg	
•••••	•••••	•••••	•••••		•• ••	•••••	
108-95-2	Phenol	20000	106-47-8	4-Chloroaniline		20000	
111-44-4	bis(2-Chloroethyl)ether	2000U	87-68-3	Hexachlorobutadiene		2000U	
95-57-8	2-Chlorophenol	2000U	59-50-7	4-Chloro-3-methylphenol		2000U	
541- <i>7</i> 3-1	1,3-Dichlorobenzene	2000U	91-57-6	2-Methylnaphthalene		2000บ	
106-46-7	1,4-Dichlorobenzene	20000	77-47-4	Hexachlorocyclopentadiene		2000U	
100-51-6	Benzyl Alcohol	2000ป	88-06-2	2,4,6-Trichlorophenol		2000U	
95-50-1	1,2-Dichlorobenzene	2000U	95-95-4	2,4,5-Trichlorophenol		9500U	
95-48-7	2-Methylphenol	2000U	91-58-7	2-Chloronaphthalene		2000u	
108-60-1	bis(2-Chloroisopropyl)ether	2000U	88-74-4	2-Nitroaniline		9500U	
106-44-5	4-Methylphenol	20000	131-11-3	Dimethylphthalate		2000U	
621-64-7	N-Nitroso-di-n-propylamine	2000U	208-96-8	Acenaphthylene		2000U	
67-72-1	Hexachloroethane	2000U	99-09-2	3-Witroaniline		9500U	
98-95-3	Nitrobenzene	2000U	83-32-9	Acenaphthene		2000U	
78-59-1	Isophorone	2000U	51-28-5	2,4-Dinitrophenal		9500U	
88-75-5	2-Nitrophenol	20000	100-02-7	4-Nitrophenol		9500U	
105-67-9	2,4-Dimethylphenol	20000	132-64-9	Dibenzofuran		20000	
65-85-0	Benzoic Acid	9500U	121-14-2	2,4-Dinitrotoluene		20000	
111-91-1	bis(2-Chloroethoxy)methane	2000U	606-20-2	2,6-Dinitrotaluene		20000	
120-83-2	2,4-Dichlorophenol	20000	84-66-2	Diethylphthalate	2000	250 J0	u
120-82-1	1,2,4-Trichlorobenzene	2000U	7005-72-3	4-Chlorophenyl-phenylether		20000	
91-20-3	Naphthalene	2000U	86-73-7	Fluorene		20000	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

ANALYSIS DATA REPORT

Analis ID: 901206-024

Laboratory: Organic Mass Spectroscopy Laboratory

.

Customer Sample ID: N-106 Customer: J. KESSNER/R. SHUCK

File ID: 10653 Sample Matrix: SOIL

Instrument ID: 5970#3 Requisition Number:

. Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Preparation Procedure Number:

Percent Moisture (decanted):

Percent Moisture:

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

Date Analyzed: 14-DEC-1990

Analysis Procedure Number: BNA (CLP) NDP

Dilution Factor: 2.0

Analyst: C MEEHAN

QA File Number: NA

		•			
CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	********	•••••		•••••
100-01-6	4-Nitroaniline	9500U	53-70-3	Dibenz(a,h)anthracene	20000
534-52-1	4,6-Dinitro-2-methylphenol	9500U	191-24-2	Benzo(g,h,i)perylene	2000U
86-30-6	N-Nitrosodiphenylamine	20000			
101-55-3	4-Bromophenyl-phenylether	2000U			
118-74-1	Hexachlorobenzene	20000			
87-86-5	Pentachlorophenol	9500U			
85-01-8	Phenanthrene	2000U			
120-12-7	Anthracene	20000			
84-74-2	Di-n-butylphthalate	2000 ኤ 🚨			
206-44-0	Fluoranthene	20000			
129-00-0	Pyrene	20000		•	
85-68-7	Butylbenzylphthalate	20000		•	
91-94-1	3,3'-Dichlorobenzidine	3900U		, 1	
56-55-3	Benzo(a)anthracene	2000U			
117-81-7	bis(2-Ethylhexyl)phthalate	2500 % U		70,	
218-01-9	Chrysene	2000U		// 4/6/	
117-84-0	Di-n-octylphthalate	110 J		191	
205-00-2	Renne/h\flumenthese	2000:		, -,	

Data Reporting Qualifiers:

2000U

20000

280 J

320 J

205-99-2 Benzo(b)fluoranthene

207-08-9 Benzo(k)fluoranthene

50-32-8 Benzo(a)pyrene

193-39-5 Indeno(1,2,3-cd)pyrene

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-024	Customer Sample ID: N-106
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10653
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor: 2.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec. 3.3 dec.	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	рн:
GPC Cleanup: (Y/N) N	
	Concentration Units
Number TICs found: 9	(ug/L or ug/Kg): <u>ug/Kg</u>

CAS NUMB		RT	EST. CONC.	1 0
******	*****	.	***********	
1123	-42-2 2-Pentanone, 4-hydroxy-4-methy	5.87	24000	
2	Unknown (Alkyl Hydrocarbon)	19.48	990	J
3		22.03	1200	1
4		- 25.61-	1100	 /0
	-99-0 Hexanedioic acid, dicyclohexyl	26.39	8100	1.3
6	Unknown (Hydrocarbon)	26:47	930	1-18-
7	Unknown (Hydrocarbon)	27.76	2600	1 1
8	Unknown (Hydrocarbon)	29.59	1400	1 1
9		33.96	1300	J
10	_	1		1
11.				1
12				1
3				1
4				1
15		1		1
16			L	1
7		1	l	1
18		1	i	i
19			l	ı
20		1	1	1
21			!	ī
22		l	1	ı
23		1	1	1
24		1	i	ī
25		1	<u>: </u>	ī
		1	<u></u>	i
26		1	!	1
27		1	<u>. </u>	1
28	· ·		1	1
29			<u> </u>	

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.

30.

- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

ANALYSIS DATA REPORT

Page 1 of 1

AnaLIS ID: 901206-024

Customer Sample ID: N-106

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07608

Sample Matrix: SOIL Requisition Number:

Instrument ID: 5970#2 Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor: Analyst: GL HUDDLESTON

Percent Moisture (decanted):

Associated Blank: 901211-004

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
	***************************************	•••••	•••••		•••••
74-87-3	Chloromethane	100	79-00-5	1,1,2-Trichloroethane	50
74-83-9	Bromomethane	100	71-43-2	Benzene	Su
75-01-4	Vinyl Chloride	100	10061-02-6	trans-1,3-Dichloropropene	5 u
75-00-3	Chloroethane	100	75-25-2	Bromoform	5บ
75-09-2	Methylene Chloride	5 27 U	108-10-1	4-Methyl-2-pentanone	10U
67-64-1	Acetone	100	591-78-6	2-Hexanone	10u
75-15-0	Carbon Disulfide	5U	127-18-4	Tetrachioroethene	รบ
75-35-4	1,1-Dichloroethene	SU	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	5บ	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	SU	108-90-7	Chlorobenzene	5 U
	Chloroform	5U	100-41-4	Ethylbenzene	5u
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	100	1330-20-7	Xylene (total)	50
71-55-6	1,1,1-Trichloroethane	5U			
56-23-5	Carbon Tetrachloride	50			
108-05-4	Vinyl Acetate	10 U		4	
75-27-4	Bromodichloromethane	5 u		1 %	
78-87-5	1,2-Dichloropropane	5 U		10	
10061-01-5	cis-1,3-Dichloropropene	Su		141,	
79-01-6	Trichloroethene	5 u		0 16/2	
124-48-1	Dibromochloromethane	Su		1-/41	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Customer Sample ID: N-107

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSHER/R. SHUCK

File ID: 10654

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

5.0

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS			ug/Kg	
*******	••••••	***********	•••••	***************************************		• • • • • • • • • • • • • • • • • • • •	
108-95-2	Phenol	10000	106-47-8	4-Chloroaniline		1000U	
111-44-4	bis(2-Chloroethyl)ether	10000	87-68-3	Hexachlorobutadiene		1000U	
95-57-8	2-Chiorophenol	10000	59-50-7	4-Chloro-3-methylphenol		10000	
541-73-1	1,3-Dichlorobenzene	10000	91-57-6	2-Methylnaphthalene		1000U	
106-46-7	1,4-Dichlorobenzene	1000U	77-47-4	Hexachlorocyclopentadiene		1000U	
100-51-6	Benzyl Alcohol	10000	88-06-2	2,4,6-Trichlorophenol		1000U	
95-50-1	1,2-Dichlorobenzene	1000U	95-95-4	2,4,5-Trichlorophenol		4900U	
95-48-7	2-Methylphenol	1000U	91-58-7	2-Chioronaphthaiene		10000	
108-60-1	bis(2-Chloroisopropyl)ether	1000U	88-74-4	2-Nitroaniline		4900U	
106-44-5	4-Hethylphenol	1000U	131-11-3	Dimethylphthalate		10000	
621-64-7	N-Nitroso-di-n-propylamine	10000	208-96-8	Acenaphthylene		1000U	
67-72-1	Hexachloroethane	10000	99-09-2	3-Nitroaniline		4900U	
98-95-3	Nitrobenzene	10000	83-32-9	Acenaph thene		1000U	
78-59-1	Isophorone	1000U	51-28-5	2,4-Dinitrophenol		4900U	
88-75-5	2-Nitrophenol	10000	100-02-7	4-Nitrophenol		4900U	
105-67-9	2,4-Dimethylphenol	10000	132-64-9	Dibenzofuran		1000U	
65-85-0	Benzoic Acid /6	389- 48-	u 121-14-2	2,4-Dinitrotoluene		1000U	
111-91-1	bis(2-Chloroethoxy)methane	10000	606-20-2	2,6-Dinitrotaluene		1000U	
120-83-2	2,4-Dichlorophenol	10000	84-66-2	Diethylphthalate	1000	230-48-	u
120-82-1	1,2,4-Trichtorobenzene	10000		4-Chlorophenyl-phenylether	-	10000	
91-20-3	Naphthalene	10000		Fluorene		10000	
	•						

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Laboratory: Organic Hass Spectroscopy Laboratory

Customer Sample ID: N-107

Customer: J. KESSNER/R. SHUCK

File ID: 10654

Authorized By: D. C. Canada

Instrument 1D: 5970#3

Sample Matrix: SOIL

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Hoisture: Percent Hoisture (decanted): Dilution Factor:

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

5.0

CAS		ug/Kg	CAS		ug/Kg
•••••	***************************************	•••••	**********	***************************************	•••••
100-01-6	4-Nitroaniline	4900U	53-70-3	Dibenz(a,h)anthracene	10000
534-52-1	4,6-Dinitro-2-methylphenol	49000	191-24-2	Benzo(g,h,i)perylene	10000
86-30-6	N-Nitrosodiphenylamine	1000U			
101-55-3	4-Bromophenyl-phenylether	10000			
118-74-1	Hexach l orobenzene	10000			
87-86-5	Pentachlorophenol	49000			
85-01-8	Phenanthrene	10000			
120-12-7	Anthracene	10000			
84-74-2	Di-n-butylphthalate	3300 B	u		
206-44-0	fluoranthene	10000			
129-00-0	Pyrene	91 J			
85-68-7	Butylbenzylphthalate	10000			
91-94-1	3,3'-Dichlorobenzidine	20000			
56-55-3	Benzo(a)anthracene	10000			
117-81-7	bis(2-Ethylhexyl)phthalate	430-√8 -	1000 U		
218-01-9	Chrysene	10000			
117-84-0	Di-n-octylphthalate	1000U			
205-99-2	Benzo(b) fluoranthene	10000			
207-08-9	Benzo(k)fluoranthene	1000U		11	
50-32-8	Benzo(a)pyrene	10000		17	
193-39-5	Indeno(1,2,3-cd)pyrene	1000U		4/6/	
Data Reporti	ng Qualifiers:			19/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-025	Customer Sample ID: N-107
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10654
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec5.0 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units

Number TICs found: 15 (ug/L or ug/Kg): ug/Kg

	S NUMBER	COMPOUND NAME	RT	EST. CONC.	0
		3-Penten-2-one, 4-methyl-	4.94	•	•
2	123-42-2	2-Pentanone, 4-hydroxy-4-methy	- 6.00	34000	-JAB-
3	25013-16-5	Phenol,(1,1-dimethylethyl)-4-m	1 -16.44	430	-18-
4		Unknown (sat'd Hydrocarbon)	19.44	690	J
5	17851-53-5	1,2-Benzenedicarboxylic acid,b	-21.30	510	- √0-
6	17851-53-5	1,2-Benzenedicarboxylic acid,b	-21.79	740-	- 18-
7		Unknown (Alkyl Hydrocarbon)	-22.73	410-	-+0-
		Unknown (sat'd Hydrocarbon)	-25.61	1300-	- 18-
		Unknown	25.90	1000	J
		Unknown (Alkyl Hydrocarbon)	76.47	1200	- 48
		Unknown	27.68	800	J
		Unknown (sat'd Hydrocarbon)	-28.11	630	- 48-
		Unknown (Hydrocarbon)	30.53	430	J
		Unknown (Hydrocarbon)	32.59	l 450	IJ
		Unknown (Hydrocarbon)	33.43	1500	J
		<u> </u>	L	1	ì
		<u> </u>	l	1	1
			1	1	
			1		1
			1	1	i .
			i	1	
_		1	1	1	<u>L</u>
			1	1	J
		1	1	!	1
		1	1	1	i
		1	1	1	1
			1		
-			1		
		1		L	L
30.			1	1	1

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

f 4/6/91

Customer Sample ID: N-107

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07609

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP
Dilution factor: 1.0

Percent Hoisture:
Percent Hoisture (decanted):

Dilution Factor: 1.0
Analyst: GL HUDDLESTON

QA File Number: NA

Associated Blank: 901211-004

[]: Result has been Corrected for Spike

5

CAS		ug/Kg	CAS		ug/Kg
•••••	***************************************	•••••	*********	***************************************	• • • • • • • • • • • • • • • • • • • •
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	Su
74-83-9	Bromomethane	110	71-43-2	Benzene	5 u
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 u
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 3+ U	108-10-1	4-Hethyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	Su	127-18-4	Tetrachloroethene	5 u
75-35-4	1,1-Dichloroethene	5U	79-34-5	1,1,2,2-Tetrachloroethane	5 u
75-34-3	1,1-Dichloroethane	Su	108-88-3		5 u
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 u
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5 u
107-06-2	1,2-Dichloroethane	5 U	100-42-5		5u
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5 U		•	
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5บ		•	
78-87-5	1,2-Dichloropropane	50		17.	
10061-01-5	cis-1,3-Dichloropropene	SU		10	
79-01-6	Trichloroethene	Su		1/4/1	
124-48-1	Dibromochloromethane	5 U		0 10/91	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

AnaLIS ID: 901206-028

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-108

Customer: J. KESSNER/R. SHUCK

File ID: 07612

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Hoisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[] : Result has been Corrected for Spike

5

CAS		ug/Kg	CAS		ug/Kg
					•••••
74-87-3		110		1,1,2-Trichloroethane	Su
74-83-9	Bromomethane	110	71-43-2	Benzene	5 u
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 2+ U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	14 U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	Su	127-18-4	Tetrachloroethene	5 u
75-35-4	1,1-Dichloroethene	5 u	79-34-5	1,1,2,2-Tetrachloroethane	Su
75-34-3	1,1-Dichloroethane	5U	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 u
67-66-3	Chloroform	5บ	100-41-4	Ethylbenzene	5 u
107-06-2	1,2-Dichloroethane	SU	100-42-5	Styrene	5u
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	SU			
108-05-4	Vinyl Acetate	1 10			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	5 U		•	
10061-01-5	cis-1,3-Dichloropropene	5 U		11	
79-01-6	Trichloroethene	5u		10	
	Dibromochloromethane	5 u	(1 4/6/91	
Data Reporti	ing Qualifiers:			' 11	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-029

Customer Sample ID: N-109

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10658

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Moisture: Percent Moisture (decanted):

Dilution Factor: Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

8.0

CAS		ug/Kg	CAS		ug/Kg	
•••••	•••••	•••••	•••••			
108-95-2	Phenol	980U	106-47-8	4-Chloroaniline	980U	
111-44-4	bis(2-Chloroethyl)ether	980U	87-68-3	Hexachlorobutadiene	9800	
. 95-57-8	2-Chlorophenol	980U	59-50-7	4-Chloro-3-methylphenol	980U	
541-73-1	1,3-Dichlorobenzene	9800	91-57-6	2-Methylnaphthalene	9800	
106-46-7	1,4-Dichlorobenzene	9800	77-47-4	Hexachlorocyclopentadiene	980∪	
100-51-6	Benzyl Alcohol	980U	88-06-2	2,4,6-Trichtorophenol	9800	
95-50-1	1,2-Dichlorobenzene	9800	95-95-4	2,4,5-Trichlorophenol	4700U	
95-48-7	2-Methylphenol	980U	91-58-7	2-Chloronaphthalene	9800	
108-60-1	bis(2-Chloroisopropyl)ether	9800	88-74-4	2-Nitroaniline	4700U	
106-44-5	4-Methylphenol	980U	131-11-3	Dimethylphthalate	9800	
621-64-7	N-Nitroso-di-n-propylamine	9800	208-96-8	Acenaphthylene	9800	
67-72-1	Hexachloroethane	980∪	99-09-2	3-Witroaniline	4700U	
98-95-3	Nitrobenzene	9800	83-32-9	Acenaphthene	980∪	
78-59-1	Isophorone	9800	51-28-5	2,4-Dinitrophenol	4700U	
88-75-5	2-Nitrophenol	9800	100-02-7	4-Witrophenol	4700U	
105-67-9	2,4-Dimethylphenol	980U	132-64-9	Dibenzofuran	9800	
65-85-0	Benzoic Acid 980	-250-40- (ル 121-14-2	2,4-Dinitrotoluene	980u	
111-91-1	bis(2-Chloroethoxy)methane	9800	606-20-2	2,6-Dinitrotoluene	980U	
120-83-2		980U		•	180 170 JB	u
120-82-1	1,2,4-Trichlorobenzene	980U		4-Chlorophenyl-phenylether	9800	-
91-20-3	Naphthalene	980U		Fluorene	980U	
20 5		,,,,				

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 ANALYSIS DATA REPORT

Page 2 of 2

Analls ID: 901206-029

Customer Sample ID: N-109

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10658

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA file Number: NA

[] : Result has been Corrected for Spike

8.0

CAS		ug/Kg		CAS		ug/Kg
100-01-6	4-Nitroaniline	4700U		53-70-3	Dibenz(a,h)anthracene	980U
534-52-1	4,6-Dinitro-2-methylphenol	4700U		191-24-2	Benzo(g,h,i)perylene	980U
86-30-6	N-Nitrosodiphenylamine	980U				
101-55-3	4-Bromophenyl-phenylether	980U				
118-74-1	Hexachlorobenzene	980U				
87-86-5	Pentachlorophenol	4700U				
85-01-8	Phenanthrene	980U				
120-12-7	Anthracene	9800				
84-74-2	Di-n-butylphthalate	1700~B	u			
206-44-0	Fluoranthene	9800				
129-00-0	Pyrene	980U				
85-68-7	Butylbenzylphthalate	9800				
91-94-1	3,3'-Dichlorobenzidine	20000				
56-55-3	Benzo(a)anthracene	980U				
117-81-7	bis(2-Ethylhexyl)phthalate	-360-49-	980	U		
218-01-9	Chrysene	980U	-			
117-84-0	Di-n-octylphthalate	980U				
205-99-2	Benzo(b) fluoranthene	9800				
207-08-9	Benzo(k)fluoranthene	9800			/	
50-32-8	Benzo(a)pyrene	9800			14	
193-39-5	Indeno(1,2,3-cd)pyrene	9800		1	104/1	
Data Reporti	ing Qualifiers:				16/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-029	Customer Sample ID: N-109
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10658
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec8.0 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units

Number TICs found: 14 (ug/L or ug/Kg): ug/Kg

CAS	NUMBER	COMPOUND NAME	RT	EST. CONC.	0
	*******		**********	**********	******
1	141-79-7	3-Penten-2-one, 4-methyl-	4.93	1100	JA
2	123-42-2	2-Pentanone, 4-hydroxy-4-methy	6.39	140000-	-UAB-
3		Unknown (Alkyl Hydrocarbon)	18.23	580	<u> </u>
4		Unknown (Alkyl Hydrocarbon)	18.78	600	J
5		Unknown (Alkyl Hydrocarbon)	19.43	1800	J
_		Unknown (Alkyl Hydrocarbon)	21.68	1100	- 18-
7		Unknown (sat'd Hydrocarbon)	22,73	650	18
8		Unknown (sat'd Hydrocarbon)	-25.60	800	- 10
9		Unknown	25.87	460	J
		Unknown (Alkyl Hydrocarbon)	26.48	880-	₩.
11		Unknown	27.69	580	J
12		Unknown (sat'd Hydrocarbon)	28,12	\$80	- 18-
		Unknown (Alkyl Hydrocarbon)	32.59	430	J
		Unknown (Hydrocarbon)	33.43	1200	IJ
			L	l	l
			l		<u> </u>
17			l	l	l
18			<u> </u>		L
			L <u>.</u> .	l	Ĺ
20			1		
21			l	1	1
			1	1	1
			1	i	1
			1		1 .
25			1	1	l
			1	1	1
			1	 	<u> </u>
					1
		./	! [<u> </u>	<u> </u>
30.			<u> </u>	<u>' </u>	1

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aidol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

1/6/91

L'HC-SD-EN-TI-136, Rev. 0 ANALYSIS DATA REPORT

Page 1 of 1

AnallS ID: 901206-029 Customer Sample ID: N-109

Laboratory: Organic Mass Spectroscopy Laboratory Customer: J. KESSNER/R. SHUCK

File ID: 07613 Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE 2 TRAP Analysis Procedure Number: VOA (CLP) NDP

Percent Hoisture: 8 Dilution Factor: 1.0

Percent Moisture (decanted): Analyst: GL MUDDLESTON

Associated Blank: 901211-004 QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
		44.4	70.00.5	4.4.5.	
74-87-3		110		1,1,2-Trichloroethane	50
74-83-9	Bromomethane	110	71-43-2	Benzene	50
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	Su
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 u
75-09-2	Methylene Chloride	5 7+ U	108-10-1	4-Hethyl-2-pentanone	110
67-64-1	Acetone	15 W	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	Su
75-35-4	1,1-Dichloroethene	Su	79-34-5	1,1,2,2-Tetrachloroethane	5 u
75-34-3	1,1-Dichloroethane	5U	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5บ	108-90-7	Chlorobenzene	5 u
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 u
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	50			
56-23-5	Carbon Tetrachloride	5บ			
108-05-4	Vinyl Acetate	11u		·	
75-27-4	Bromodichloromethane	5u		12	
78-87-5	1,2-Dichloropropane	5 U		1 11	
10061-01-5	cis-1,3-Dichloropropene	5 u	,	(/ 1/6/2	
79-01-6	Trichloroethene	5 u	L	('~/91	
124-48-1	Dibromochloromethane	5 U		•	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-030

Customer Sample ID: N-110

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10659

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture: 7.4 Dilution Factor: 1.0 Analyst: C MEEHAN

Percent Moisture (decanted):

Associated Blank: 901213-028

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg	
108-95-2	Phone	990u	40/ /7 *	/ Abbassattt-		
111-44-4		****		4-Chloroaniline	9900	
	bis(2-Chloroethyl)ether	990U	87-68-3	Hexachlorobutadiene	990U	
95-57-8	·····	990U	59-50-7		9900	
541-73-1	1,3-Dichlorobenzene	9 90U	91-57-6	2-Methylnaphthalene	9900	
106-46-7	1,4-Dichlorobenzene	9900	77-47-4	Hexachlorocyclopentadiene	9900	
100-51-6	Benzyl Alcohol	990U	88-06-2	2,4,6-Trichlorophenol	990U	
95-50-1	1,2-Dichlorobenzene	9900	95-95-4	2,4,5-Trichlorophenol	4800U	
95-48-7	2-Methylphenol	990U	91-58-7	2-Chloronaphthalene	990U	
108-60-1	bis(2-Chloroisopropyl)ether	990U	88-74-4	2-Nitroaniline	4800U	
106-44-5	4-Methylphenol	990U	131-11-3	Dimethylphthalate	9900	
621-64-7	N-Nitroso-di-n-propylamine	990U	208-96-8	Acenaphthylene	990ü	
67-72-1	Hexachloroethane	990U	99-09-2	3-Nitroaniline	4800U	
98-95-3	Nitrobenzene	990U	83-32-9	Acenaph thene	9900	
78-59-1	Isophorone	990U	51-28-5	2,4-Dinitrophenol	4800U	
88-75-5	2-Nitrophenol	990U	100-02-7	4-Nitrophenol	4800U	
105-67-9	2,4-Dimethylphenol	9900	132-64-9	Dibenzofuran	9900	
65-85-0	Benzoic Acid	990 -318-18 U	121-14-2	2,4-Dinitrotoluene	990U	
111-91-1	bis(2-Chloroethoxy)methane	9900	606-20-2	2,6-Dinitrotoluene	990u	
120-83-2	2,4-Dichlorophenol	9 90U	84-66-2	Diethylphthalate	990 -200 18	u
120-82-1	1,2,4-Trichlorobenzene	990U	7005-72-3	4-Chlorophenyl-phenylether	9900	
91-20-3	Naphthalene	990U	86-73-7	fluorene	990U	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldoi condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 ANALYSIS DATA REPORT

Page 2 of 2

Analis ID: 901206-030

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-110 Customer: J. KESSNER/R. SHUCK

File ID: 10659

Sample Matrix: SOIL

Instrument 10: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Analysis Procedure Number: BNA (CLP) NDP

Preparation Procedure Number: Percent Moisture:

7.4

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN QA File Number: NA

Date Analyzed: 14-DEC-1990

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	***************************************	•••••	*********	************************	
100-01-6	4-Nitroaniline	4800U	53-70-3	Dibenz(a,h)anthracene	9900
534-52-1	4,6-Dinitro-2-methylphenol	4800U	191-24-2	Benzo(g,h,i)perylene	9901
86-30-6	N-Nitrosodiphenylamine	990U		•	
101-55-3	4-Bromophenyl-phenylether	990U			
118-74-1	Hexach l orobenzene	9900			
87-86-5	Pentachlorophenol	4800U			
85-01-8	Phenanthrene	9900			
120-12-7	Anthracene	990U			
84-74-2	Di-n-butylphthalate	1800 %	u		
206-44-0	Fluoranthene	990U			
129-00-0	Pyrene	990U		·	
85-68-7	Butylbenzylphthalate	990U			
91-94-1	3,3'-Dichlorobenzidine	20000			
56-55-3	Benzo(a)anthracene	9900			
117-81-7	bis(2-Ethylhexyl)phthalate	-380-JB-	990 U		
218-01-9	Chrysene	9 90U			
117-84-0	Di-n-octylphthalate	9900			
205-99-2	Benzo(b)fluoranthene	990U			
207-08-9	Benzo(k)fluoranthene	9900		•	
50-32-8	Benzo(a)pyrene	990U		11	
193-39-5	Indeno(1,2,3-cd)pyrene	990U		10	
Data Reporti	ng Qualifiers:			146/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- NO Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-030	Customer Sample ID: N-110
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10659
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 14-DEC-1990
X Moisture: not dec 7.4 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units
Number TICs found: 12	(ug/L or ug/Kg): <u>ug/Kg</u>

Number TICs found: 12 EST. CONC. CAS NUMBER COMPOUND NAME 490 | JA 1. 141-79-7 3-Penten-2-one, 4-methyl-4.92 1 2. 123-42-2 2-Pentanone, 4-hydroxy-4-methy -6.00 | 3300000 -|- JA-3. 872-50-4 2-Pyrrolidinone, 1-methyl--9.82 | 450 1 48 4. Unknown (sat'd Hydrocarbon) 660 | J 19.43 Unknown (sat'd Hydrocarbon) 25.61 860 | 18 Unknown (Hydrocarbon) 25.89 850 | J 6.___ Unknown (sat'd Hydrocarbon) 940 | JB 26:49 1500 J Unknown 27.67 590 | JB-Unknown (Hydrocarbon) 20:12 | Unknown (Hydrocarbon) 30.53 410 | J | 10.____ | 11.____ Unknown (Hydrocarbon) 32.60 420 J 1300 J 33.45 12.____ Unknown (Hydrocarbon) | 13.____ 1 14.____ 15.____ 16.____ | 17.____

25.____ | 26.____ 27. 28. 29.____ 30.

Data Reporting Qualifiers:

18.___ 19.___ j 20. 21.____ | 22.____ 23.____ 24.____

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

ANALYSIS DATA REPORT

Analis ID: 901206-030

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-110

Customer: J. KESSNER/R. SHUCK

File ID: 07614

Sample Matrix: SOIL

Requisition Number:

Instrument 1D: 5970#2 Authorized By: D. C. Cenada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
74-87-3	Chloromethane	****			••••••
74-83-9		110		1,1,2-Trichloroethane	5U
- -		110	71-43-2	Benzene	5 U
75-01-4	,.	110	10061-02-6	trans-1,3-Dichloropropene	Su
75-00-3		110		Bromoform	5u
75-09-2	Methylene Chloride	5 77 U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	11 u		2-Hexanone	110
75-15-0	Carbon Disulfide	SU	127-18-4	Tetrachloroethene	Su
75-35-4	1,1-Dichloroethene	5 U		1,1,2,2-Tetrachioroethane	5U
75-34-3	1,1-Dichloroethane	5U	108-88-3		
540-59-0	1,2-Dichloroethene (total)	5U	-	Chlorobenzene	5U
	Chloroform	5U		Ethylbenzene	5U
107-06-2	1,2-Dichloroethane	Su	100-42-5		5U
78-93-3	2-Butanone	110		Xylene (total)	50
71-55-6	1,1,1-Trichloroethane	5U		Afterie (total)	50
	Carbon Tetrachloride	5 U		1	
108-05-4	Vinyl. Acetate	110		11	
75-27-4	Bromodichloromethane	5U		10.	
78-87-5	1,2-Dichloropropane	SU		14/1	
	cis-1,3-Dichloropropene	5U	- 4	16/01	
	Trichloroethene	SU		/ 7 /	
124-48-1	Dibromochloromethane	5 U			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 site

Analytical Chemistry Department

YOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

naLIS ID: 901206	-030	Customer	Sample ID: N-1	10	
	ic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK File ID: 07614 Date Received: 6-DEC-1990			
ample Matrix: 50					
evel: (low/med):					
ilution Factor:		Date Ana	lyzed: 11-DEC-1	990	
Moisture: not de				_ _	
		Concentra	stion Units		
umber TICs found	: <u>1</u>	(ug/L or	ug/Kg): <u>ug/Kg</u>		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	a	
**********	*****************************		*********		
1. 76-13-1	Freon 113	5.25	· · · · · ·	 	
2		<u> </u>	<u> </u>		
3	1	<u> </u>	1	<u></u>	
4	<u> </u>	L	L		
5	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
6	<u> </u>	<u></u>	<u> </u>		
7	<u> </u>	1	<u> </u>	<u> </u>	
8	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
9	L	J	<u> </u>	L1	
10		<u> </u>	<u></u>	L	
11		1	L	<u> </u>	
12	1	J	L	<u> </u>	
13		J	<u> </u>		
14			<u> </u>		
15					
16					
17			1	LI	
18			1		
19		1	1		
20		1	1	11	
21			l	السللا	
22		ľ		11	
23	1	l			
24		1	1		
25			l		
26	1	L	1	السيل	
27	1				
	· · · · · · · · · · · · · · · · · · ·	•			

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.

30.

- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. U ANALYSIS DATA REPORT

Page 1 of 2

Analis ID: 901206-031

Customer Sample ID: N-111

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10660

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Moisture: Percent Moisture (decanted):

Dilution Factor: Analyst: C MEEHAN

Associated Blank: 901213-028

QA file Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg		CAS		ug/Kg	
•••••	***************************************	•••••		•••••		•••	
108-95-2	Phenol	990U		106-47-8	4-Chloroaniline	990U	
111-44-4	bis(2-Chloroethyl)ether	990U		87-68-3	Hexachlorobutadiene	990U	
95-57-8	2-Chlorophenol	990U		59-50-7	4-Chloro-3-methylphenol	990U	
541-73-1	1,3-Dichlorobenzene	9900		91-57-6	2-Methylnaphthalene	9900	
106-46-7	1,4-Dichlorobenzene	990U		77-47-4	Hexachlorocyclopentadiene	990U	
100-51-6	Benzyl Alcohol	990U		88-06-2	2,4,6-Trichlorophenol	9900	
95-50-1	1,2-Dichlorobenzene	990U		95-95-4	2,4,5-Trichlarophenol	4800U	
95-48-7	2-Methylphenol	9900		91-58-7	2-Chloronaphthalene	9900	
108-60-1	bis(2-Chloroisopropyl)ether	990U		88-74-4	2-Nitroaniline	4800U	
106-44-5	4-Methylphenol	9900		131-11-3	Dimethylphthalate	990U	
621-64-7	N-Nitroso-di-n-propylamine	9900		208-96-8	Acenaphthylene	9900	
67-72-1	Hexachioroethane	9900		99-09-2	3-Nitroaniline	4800U	
98-95-3	Nitrobenzene	9900		83-32-9	Acenaphthene	9900	
78-59-1	Isophorone	9900		51-28-5	2,4-Dinitrophenol	4800U	
88-75-5	2-Nitrophenol	9900		100-02-7	4-Nitrophenol	4800U	
105-67-9	2,4-Dimethylphenol	990U		132-64-9	Dibenzofuran	9900	
65-85-0	Benzoic Acid 96	70 210 Ja	U	121-14-2	2,4-Dinitrotoluene	990U	
111-91-1	bis(2-Chloroethoxy)methane	990U		606-20-2	2,6-Dinitrotoluene	990U	
120-83-2	2,4-Dichlorophenol	9900			Diethylphthalate	990 230 JB	u
	1,2,4-Trichlorobenzene	990U			4-Chlorophenyl-phenylether	9900	_ •
91-20-3	Naphthalene	990U			Fluorene	9900	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Analis ID: 901206-031

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-111

Customer: J. KESSNER/R. SHUCK

File ID: 10660

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Percent Moisture:

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Dilution Factor: 1.0

Percent Moisture (decanted):

6.1

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	•••••	•••••	••••••	
100-01-6	4-Nitroaniline	4800U	53-70-3	Dibenz(a,h)anthracene	9900
534-52-1	4,6-Dinitro-2-methylphenol	4800U	191-24-2	Benzo(g,h,i)perylene	9900
86-30-6	N-Nitrosodiphenylamine	9900			
101-55-3	4-Bromophenyl-phenylether	9900			
118-74-1	Hexach Lorobenzene	9900			
87-86-5	Pentachlorophenol	4800U			
85-01-8	Phenanthrene	9900			
120-12-7	Anthracene	9900			
84-74-2	Di-n-butylphthalate -	1 80 - 0 -	990 U		
206-44-0	Fluoranthene	9900			
129-00-0	Pyrene	9900			
85-68-7	Butylbenzylphthalate	9900			
91-94-1	3,3'-Dichlorobenzidine	20000			
56-55-3	Benzo(a)anthracene	9900			
117-81-7	bis(2-Ethylhexyl)phthalate	-300 -JB-	940 U		
218-01-9	Chrysene	9900			
117-84-0	Di-n-octylphthalate	9900			
205-99-2	Benzo(b) fluoranthene	9900			
207-08-9	Benzo(k)fluoranthene	9 90U		Ø	
50-32-8	Benzo(a)pyrene	9900		11	
193-39-5	Indeno(1,2,3-cd)pyrene	9 90U		1/4/61	
Data Reporti	no Qualifiers:			0 10/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WilC-SD-EN-TI-136, Rev. 0 Ook Ridge K-25 site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-031	Customer Sample ID: N-111
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10660
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec. 6.1 dec.	Date Extracted: 12-DEC-1990
Extraction: (Sepf/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units

Number TICs found: 15

Concentration Units
(ug/L or ug/Kg): ug/Kg

	S NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
			*	•	,
_		2-Pentanone, 4-hydroxy-4-methy		20000	-JAB-
2	872-50-4	2-Pyrrolidinone, 1-methyl-	7.02	<u> </u>	10
3	<u> 25013-16-5</u>	Phenol, (1,1-dimethylethyl)-4-m	16.45	530_	18
4		Unknown (sat'd Hydrocarbon)	19.42	830	J
5		Unknown (Alkyl Hydrocarbon)	-21.69	500	18
6		Unknown (sat'd Hydrocarbon)	22.73	410	J
7		Unknown (Hydrocarbon)	23.74	500	JO-
8		Unknown (sat'd Hydrocarbon)	25,40	1	
9		Unknown (Hydrocarbon)	25.89	850	J
		Unknown (sat'd Hydrocarbon)	26,48	000_	18
11		Unknown	27.53	660	J
		Unknown (Hydrocarbon)	28.12-	430	10-
		Unknown	29.39	470	[_J
		Unknown (sat'd Hydrocarbon)	32.59	420] J
		Unknown (Hydrocarbon)	33.51	1500	J
		Ī	1	1	1
		1		1	1
				1	i
		1	1	ì	i
		1	1	i	†
24 24		1	1	1	<u> </u>
		1	_ <u>-</u>		}
		1		. 	
		<u> </u>	_ <u></u>	<u>. </u>	
		1	1	<u> </u>	1
				<u> </u>	
_				<u> </u>	
Z7		<u> </u>	<u></u>	<u> </u>	1
			<u> </u>	<u>!</u>	<u>!</u>
		1		!	<u> </u>
30.				1	L

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

J46/91

Analis ID: 901206-031

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-111

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL

File ID: 07615 Instrument ID: 5970#2 Authorized By: D. C. Canada

Requisition Number:

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
	•••••	•••••	•••••	•••••	•••••
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	50
74-83-9	Bromomethane	110	71-43-2	Benzene	5U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichioropropene	5U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 -2+ U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	1 10
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	50
75-35-4	1,1-Dichloroethene	SU	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	SU	108-88-3	Toluene	5υ
540-59-0	1,2-Dichloroethene (total)	รบ	108-90-7	Chlorobenzene	50
67-66-3	Chloroform	SU	100-41-4	Ethylbenzene	50
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone .	110	1330-20-7	Xylene (total)	5บ
71-55-6	1,1,1-Trichloroethane	5U			
56-23-5	Carbon Tetrachloride	50			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5 U		/	
78-87-5	1,2-Dichloropropane	5 U		1-1	
10061-01-5	cis-1,3-Dichloropropene	5U		10	
79-01-6	Trichloroethene	50		1 4/1	
124-48-1	Dibromochloromethane	5 U		0 7/6/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-032

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-112

Customer: J. KESSNER/R. SHUCK

File ID: 10661

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Percent Moisture (decanted):

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Associated Blank: 901213-028

Analyst: C MEEHAN QA File Number: NA

D: Result has been Corrected for Spike

CAS			ug/Kg		CAS			ug/Kg	
		•• •	• • • • • • • • • • • • • • • • • • • •		•••••		•• ••	•••••	
108-95-2			1000U		106-47-8	4-Chioroaniline		1000U	
111-44-4	bis(Z-Chloroethyl)ether		10000		87-68-3	Hexachlorobutadiene		10000	
95-57-8	2-Chlorophenol		10000		59-50-7	4-Chloro-3-methylphenol		10000	
541-73-1	1,3-Dichlorobenzene		1000U		91-57-6	2-Methylnaphthalene		10000	
106-46-7	1,4-Dichlorobenzene		10000		77-47-4	Mexachlorocyclopentadiene		10000	
100-51-6	Benzył Alcohol		1000U		88-06-2	2,4,6-Trichtorophenol		10000	
95-50-1	1,2-Dichlorobenzene		10000			2,4,5-Trichtorophenol		5000U	
95-48-7	Z-Methylphenol		10000			2-Chloronaphthalene		10000	
108-60-1	bis(2-Chloroisopropyl)ether		10000			2-Nitroaniline		50000	
106-44-5	4-Methylphenol		10000		131-11-3	Dimethylphthalate		10000	
621-64-7	N-Nitroso-di-n-propylamine		10000		208-96-8	Acenaphthylene		10000	
67-72-1	Hexachloroethane		10000		99-09-2	3-Nitroaniline		5000U	
98-95-3	Nitrobenzene		10000		83-32-9	Acenaphthene		10000	
78-59-1	Isophorone		10000		51-28-5	2,4-Dinitrophenol		50000	
88-75-5	2-Nitrophenal		1000U			4-Nitrophenol		5000U	
105-67-9	2,4-Dimethylphenol		10000		132-64-9			10000	
65-85-0		1000	-250 JB	u	121-14-2	2,4-Dinitrotoluene		10000	
111-91-1	bis(2-Chloroethoxy)methane	-	10000			2,6-Dinitrotoluene		10000	
120-83-2	2,4-Dichlorophenol		10000				1~~	270-JB-	и
120-82-1	1,2,4-Trichlorobenzene		10000			4-Chlorophenyl-phenylether	, ~~	10000	4
91-20-3	Naphthalene		10000			Fluorene			
/ LU-3	unburring reise		10000		00-17-1	rtuorene		1000U	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-032

Customer Sample ID: N-112

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10661

Sample Matrix: SOIL

Instrument ID: 5970#3

Authorized By: D. C. Canada

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

4.3

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	•••••	•••••	•••••	•••••
100-01-6	4-Nitroaniline	5000U	53-70-3	Dibenz(a,h)anthracene	1000U
534-52-1	4,6-Dinitro-2-methylphenol	5000U	191-24-2	Benzo(g,h,i)perylene	1000U
86-30-6	N-Nitrosodiphenylamine	10000			
101-55-3	4-Bromophenyl-phenylether	10000			
118-74-1	Hexachlorobenzene	1000U			
87-86-5	Pentachlorophenol	5000U			
85-01-8	Phenanthrene	10000			
120-12-7	Anthracene	10000			
84-74-2	Di-n-butylphthalate	3500 %	u		
206-44-0	Fluoranthene	10000			
129-00-0	Pyrene	10000			
85-68-7	Butylbenzylphthalate	10000			
91-94-1	3,3'-Dichlorobenzidine	21000			
56-55-3	Benzo(a)anthracene	10000			
117-81-7	bis(2-Ethylhexyl)phthalate	730 JB-	1000U		
218-01-9	Chrysene	10000			
117-84-0	Di-n-octylphthalate	99 J			
205-99-2	Benzo(b)fluoranthene	10000			
207-08-9	Benzo(k)fluoranthene	10000		1	
50-32-8	Benzo(a)pyrene	10000		12	
193-39-5	Indeno(1,2,3-cd)pyrene	1000U		14/6/	
Data Reporti	ing Qualifiers:			0 17/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS

TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-032	Customer Sample ID: N-112
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK
Sample Matrix: SOIL	File ID: 10661
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec4.3 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units

Number TICs found: 16

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUME	BER	COMPOUND NAME	RT RT	EST. CONC.	0
*********	*****	*****************************		*******	*****
1141	1-79-7	3-Penten-2-one, 4-methyl-	4.92	430	JA
2. 123	3-42-2	2-Pentanone, 4-hydroxy-4-methy	7.97	3100	-0A0-
3. 872	2-50-4	2-Pyrrolidinone, 1-methyl-	1 9,82	550	 _0 _
4. 25013	3-16-5	Phenol,(1,1-dimethylethyl)-4-m	16.45	500	 40 -
5. 17851	1-53-5	1,2-Benzenedicarboxylic acid,b	21.30	700	 48-
6		Unknown (sat'd Hydrocarbon)	-21:69	430	 48-
7	1	Unknown (Alkyl Hydrocarbon)	-22.73	470	10
8		Unknown (Alkyl Hydrocarbon)	-23.74	640	 √8−
9		Unknown	24.00	440	J
10		Unknown (sat'd Hydrocarbon)	- 25.60 -	1200-	₩-
11		Unknown (Alkyl Hydrocarbon)	25,91	970	J
		Dioctyl Adipate	26.40	2500	J
13		Unknown (Alkyl Hydrocarbon)	-26,48	1100	 JB-
14.		Unknown	1 27,71	1 1400	J
15		Unknown (Hydrocarbon)	28,12	540	 J B-
16			33.57	1000	J
17					
18.				1	1
19			1	1	i i
20		<u> </u>	1	1	i
21			<u> </u>	<u> </u>	1
22		1	_ 	1	i
23		1	- 	1	İ
24		1	1	1	l
25		<u> </u>		i	i
26			1	i	ì
27.			1	Ì	Ī
28			i	i	Ī
29		<u> </u>	i	i	ì
30.		<u>. </u>		1	

30.

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.

- E Exceeds initial calibration range.
- P Probable Identification.

Anelis ID: 901206-032

Customer Sample ID: N-112

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07616

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Hoisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[] : Result has been Corrected for Spike

6

			CAS		ug/Kg
		•••••	**********	*****************	•••••
	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5 u
	Bromomethane	110	71-43-2	Benzene	5 U
	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5บ
	Chloroethane	110	75-25-2	Bromoform	5ບ
75-09-2	Methylene Chloride	Su	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	28 U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5u	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	Str
75-34-3	1,1-Dichloroethane	Su	108-88-3		5υ
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	Su
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	\$u
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	50
78-93-3	2-Butanone	1 1U		Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5 U		•	
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	1 1 U			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	5 U		11	
	cis-1,3-Dichloropropene	5 U		1.1	
	Trichloroethene	50		1011	
124-48-1	Dibromochloromethane	5 U		1 4/6/2	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

ANALYSIS DATA REPORT

Analis ID: 901206-033

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-113

Customer: J. KESSNER/R. SHUCK

File ID: 10662

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

3.8

CAS		ug/Kg	CAS		ug/Kg
108-95-2	Phenol		***********	*	•• ••••••
	*	880U	106-47-8	· •	880U
111-44-4		880U	87-68-3	Mexachlorobutadiene	880U
95-57-8	2-Chiorophenol	880U	59-50-7	4-Chloro-3-methylphenol	880U
541-73-1	1,3-Dichlorobenzene	880U	91-57-6	2-Methylnaphthalene	880U
106-46-7	1,4-Dichlorobenzene	880U	77-47-4	Hexachlorocyclopentadiene	· 880U
100-51-6	Benzyl Alcohol	880U	88-06-2	2,4,6-Trichlorophenol	V088
95-50-1	1,2-Dichlorobenzene	880U	95-95-4	2,4,5-Trichlorophenol	4300U
95-48-7	2-Methylphenol	880U	91-58-7	2-Chloronaphthalene	880U
108-60-1	bis(2-Chloroisopropyl)ether	880U	88-74-4	2-Nitroaniline	4300U
106-44-5	4-Methylphenol	880U	131-11-3	Dimethylphthalate	880U
621-64-7	N-Nitroso-di-n-propylamine	880U	208-96-8	Acenaphthylene	880U
67-72-1	Hexachloroethane	880U		3-Nitroaniline	4300U
98-95-3	Nitrobenzene	880U	83-32-9	Acenaphthene	880U
78-59-1	Isophorone	880U	51-28-5	2,4-Dinitrophenol	4300U
88-75-5	2-Nitrophenol	880U	100-02-7	4-Nitrophenol	4300U
105-67-9	2,4-Dimethylphenol	880U	132-64-9	Dibenzofuran	880U
65-85-0	Benzoic Acid	N et 005- 088	121-14-2	2,4-Dinitrotoluene	880U
111-91-1	bis(2-Chloroethoxy)methane	880U	606-20-2	2,6-Dinitrotoluene	880U
120-83-2	2,4-Dichlorophenol	880U	84-66-2	Diethylphthalate	880 460 JB U
120-82-1	1,2,4-Trichlorobenzene	880U	7005-72-3	4-Chlorophenyl-phenylether	880U
91-20-3	Naphthalene -	880U		Fluorene	8800

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

ANALYSIS DATA REPORT

Analis ID: 901206-033 Customer Sample ID: N-113

Customer: J. KESSNER/R. SHUCK Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL File ID: 10662

Instrument ID: 5970#3 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Preparation Procedure Number:

Percent Moisture (decanted):

3.8

Percent Moisture:

Associated Blank: 901213-028

[]: Result has been Corrected for Spike

Date Analyzed: 14-DEC-1990

Analysis Procedure Number: BNA (CLP) NDP

Dilution Factor: 1.0

Analyst: C MEEHAN

QA File Number: NA

CAS		ug/Kg	CAS		ug/Kg
100-01-6	4-Nitrosniline	4300U	53-70-3	Dibenz(a,h)anthracene	8800
534-52-1	4,6-Dinitro-Z-methylphenol	4300U	191-24-2	Benzo(g,h,i)perylene	880U
86-30-6	N-Nitrosodiphenylamine	880U			
101-55-3	4-Bromophenyl-phenylether	880U			
118-74-1	Hexachlorobenzene	880U			
87-86-5	Pentachlorophenol	4300U			
85-01-8	Phenanthrene	8800			
120-12-7	Anthracene	880U			
84-74-2	Di-n-butylphthalate	1600 %	u		
206-44-0	Fluoranthene	8800			
129-00-0	Pyrene	880U			
85-68-7	Butylbenzylphthalate	U088		•	
91-94-1	3,3'-Dichlorobenzidine	18000			
56-55-3	Benzo(a)anthracene	880U			
117-81-7	bis(2-Ethylhexyl)phthalate	-350-40	880 K		
218-01-9	Chrysene	8800			
117-84-0	Di-n-octylphthalate	U088			
205-99-2	Benzo(b)fluoranthene	880U			
207-08-9	Benzo(k)fluoranthene	8800			
50-32-8	Benzo(a)pyrene	8800		17	
193-39-5	Indeno(1,2,3-cd)pyrene	880U		10.	
Data Reporti	ing Qualifiers:			1 4/6/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-033	Customer Sample ID: N-113
Laboratory: Organic Hass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 10662
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec3.8 dec	Date Extracted: 12-DEC-1990
Extraction: (Sepf/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) M	·

Number TICs found: 13

Concentration Units (ug/L or ug/Kg): ug/Kg

	S NUMBER	COMPOUND NAME	RT	EST. CONC.	0
			***********	•	2222222
_		2-Pentanone, 4-hydroxy-4-methy	5,76_	28000	- UAB
		Phenol,(1,1-dimethylethyl)-4-m	16.43	t	
		Unknown (Alkyl Hydrocarbon)	19.43	550	<u> </u>
		Unknown (Alkyl Hydrocarbon)	21.68	300	 10 -
5	17851-53-5	1,2-Benzenedicarboxylic acid,b	21.80	380	10
6		Unknown (Hydrocarbon)	25.39	750	- 10 -
7		Unknown (Hydrocarbon)	25.90	800	[]
8		Unknown (sat'd Hydrocarbon)	-26.47	770	 48-
9		Unknown	27.68	1600	J
10		Unknown (sat'd Hydrocarbon)	20.13	570	 10
11		Unknown (Hydrocarbon)	30.54	370	J
		Unknown (Alkyl Hydrocarbon)	32.60	410]]
		Unknown (Alkyl Hydrocarbon)	33.46	1400]
			I	1	
			1	1	 !
			l		<u> </u>
			1	l	<u> </u>
			1	1	
			<u> </u>		'
			1	l	¦ I
			1	! !	<u> </u>
			1	<u> </u>	l I
			1	1	\ 1
			l	l	<u> </u>
			ì	<u> </u>	<u></u> _
			!	1	
			i		
28.			i	<u> </u>	<u> </u>
29.			i	<u> </u>	<u> </u>
30.			1	L	

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/9,

Analis ID: 901206-033

Customer Sample ID: N-113

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK Sample Matrix: SOIL

File ID: 07617

Requisition Number:

Instrument ID: 5970#2 Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Associated Blank: 901211-004

Analyst: GL HUDDLESTON

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
74-87-3	Chloromethane	110	70-00-5	1,1,2-Trichloroethane	5u
74-83-9		110		Benzene	5U
	Vinyl Chloride	110		trans-1,3-Dichloropropene	5U
	Chloroethane	110	75-25-2	Bromoform	50
75-09-2	Methylene Chloride	5U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	32 U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5U	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	SU	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	SU	108-88-3		5 U
540-59-0	1,2-Dichloroethene (total)	5U	108-90-7	Chlorobenzene	5 u
67-66-3	Chloroform	50	100-41-4	Ethylbenzene	Su
107-06-2	1,2-Dichloroethane	5 U	100-42-5		5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	50		,	
78-87-5	1,2-Dichloropropane	SU		11	
10061-01-5	cis-1,3-Dichloropropene	5 U		110,	
	Trichloroethene	50		14/1	
124-48-1	Dibromochloromethane	Su	6	10/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-034

File ID: 10663

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-114

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL

Requisition Number:

Instrument 10: 5970#3

Date Sample Received: 6-DEC-1990 Authorized By: D. C. Canada

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

3.3

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

QA File Number: NA

Associated Blank: 901213-028

[] : Result has been Corrected for Spike

CAS		υ	g/Kg		CAS		ug/Kg	
•••••					**********		• ••••••	
108-95-2	Phenol		880U		106-47-8	4-Chloroaniline	880U	
111-44-4	bis(2-Chloroethyl)ether		880U		87-68-3	Hexachlorobutadiene	8800	
95-57-8	2-Chlorophenol		880U		59-50-7	4-Chloro-3-methylphenol	8800	
541-73-1	1,3-Dichlorobenzene		880U		91-57-6	2-Methylnaphthalene	880U	
106-46-7	1,4-Dichlorobenzene		880U		77-47-4	Mexachlorocyclopentadiene	8800	
100-51-6	Benzyl Alcohol		880U		88-06-2	2,4,6-Trichlorophenol	880U	
95-50-1	1,2-Dichlorobenzene		8800		95-95-4	2,4,5-Trichlorophenol	4200U	
95-48-7	2-Methylphenol		8800		91-58-7	2-Chloronaphthalene	8800	
108-60-1	bis(2-Chloroisopropyl)ether		880U		88-74-4	2-Nitroaniline	4200U	
106-44-5	4-Methylphenol		880U		131-11-3	Dimethylphthalate	880U	
621-64-7	N-Nitroso-di-n-propylamine		8800		208-96-8	Acenaphthylene	U088	
67-72-1	Hexachloroethane		880U		99-09-2	3-Nitroaniline	4200U	
98-95-3	Nitrobenzene		880U		83-32-9	Acenaphthene	U088	
78-59-1	Isophorone		880U		51-28-5	2,4-Dinitrophenol	4200U	
88-75-5	2-Nitrophenol		8800		100-02-7	4-Nitrophenol	4200U	
105-67-9	2,4-Dimethylphenol		880U		132-64-9	Dibenzofuran	880U	
65-85-0	Benzoic Acid	680 1	170 JB	U	121-14-2	2,4-Dinitrotoluene	880U	
111-91-1	bis(2-Chloroethoxy)methane		8800		606-20-2	2,6-Dinitrotoluene	880U	ı
120-83-2	2,4-Dichlorophenol		8800		84-66-2	Diethylphthalate	880-250-36	u
120-82-1	·		880U		7005-72-3	4-Chlorophenyl-phenylether	880U	1
91-20-3	Naphthalene		8800		86-73-7	fluorene	880 U	1
	•							

Data Reporting Qualifiers:

v - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-034

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-114

Customer: J. KESSNER/R. SHUCK

File ID: 10663 Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

Sample Matrix: SOIL

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Analysis Procedure Number: BNA (CLP) NDP

Preparation Procedure Number:

Dilution Factor:

1.0

Percent Moisture:

3.3

Analyst: C MEEHAN

Percent Moisture (decanted):

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
100-01-6	4-Nitroaniline	4200U	53-70-3	Dibenz(a,h)anthracene	880U
534-52-1	4,6-Dinitro-2-methylphenol	4200U	191-24-2	Benzo(g,h,i)perylene	880U
86-30-6	N-Nitrosodiphenylamine	880U			
101-55-3	4-Bromophenyl-phenylether	U088			
118-74-1	Hexachlorobenzene	880U			
87-86-5	Pentach lorophenol	4200U			
85-01-8	Phenanthrene	880U			
120-12-7	Anthracene	U088			
84-74-2	Di-n-butylphthalate	2900 %	u		
206-44-0	Fluoranthene	880U			
129-00-0	Pyrene	8800			
85-68-7	Butylbenzylphthalate	880U			
91-94-1	3,3'-Dichlorobenzidine	1800U			
56-55-3	Benzo(a)anthracene	880U			
117-81-7	bis(2-Ethylhexyl)phthalate	- 250-18-	880 U		
218-01-9	Chrysene	880U			
117-84-0	Di-n-octylphthalate	8800			
205-99-2	Benzo(b)fluoranthene	880U			
207-08-9	Benzo(k)fluoranthene	880U			
50-32-8	Benzo(a)pyrene	U088		17	
193-39-5	Indeno(1,2,3-cd)pyrene	880U		141.1	
Data Reporti	ng Qualifiers:			1 16/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-034	Customer Sample ID: N-114
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK
Somple Matrix: SOIL	File ID: 10663
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 14-DEC-1990
% Moisture: not dec3.3 dec	Date Extracted: 12-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
=	0

Number TICs found: 14 Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
***********	******************************	***********	*********	******
1123-42-2	2-Pentanone, 4-hydroxy-4-methy	5.91-	21000	
2. 872-50-4	2-Pyrrolidinone, 1-methyl-	-0,81	480	-48-
3. <u>25013-16-5</u>	Phenol,(1,1-dimethylethyl)-4-m	-16-44-	448	-10-
4. <u>17851-53-5</u>	1,2-Benzenedicarboxylic acid,b	-21.29	520	- 48-
5	Unknown (sat'd Hydrocarbon)	- 21.68	390	-18-
6	Unknown	21.93	370	J
7	Unknown (Hydrocarbon)	-22.72	390	- 10 -
8	Unknown (Alkyl Hydrocarbon)	-23.75	560	₩-
9.	Unknown (sat'd Hydrocarbon)	-27.39	970	 JS -
10	Unknown	25.96	620	J
11.	Unknown (sat'd Hydrocarbon)	-26.47	-070-	- 18-
12	Unknown	27.68	2800	J
13	Unknown (Alkyl Hydrocarbon)	- 28,13	400	
14.	Unknown	33.74	610	J
15		l	!	1
16		I	1	
17.		 	1	1
18	1	l	t	Ì
19	1	l	1	Î
20	1		l	1
21.	1	<u> </u>	ĺ	i
22.	Ì	1	i	
23	1	i	1	î
24	<u> </u>	i	<u> </u>	i
25	 	i	i	1
26		<u> </u>	<u> </u>	<u>, </u>
27	<u> </u>		i I	ì
28	1	<u> </u>	<u> </u>	ì
29.	l .	<u> </u>	<u> </u>	1
30.	<u>) </u>	 -	<u> </u>	<u>. </u>

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Page 1 of 1

Analis ID: 901206-034 Customer Sample ID: N-114

Laboratory: Organic Mass Spectroscopy Laboratory Customer: J. KESSNER/R. SHUCK

File ID: 07618 Sample Matrix: SOIL

Instrument 10: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture: Dilution Factor: 1.0 Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004 QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
		•••••	*********	***************************************	•••••
	Chloromethane	110		1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	110		Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	ริบ
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 u	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	12 U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	50
75-35-4	1,1-Dichloroethene	Su	79-34-5	1,1,2,2-Tetrachloroethane	SU
75-34-3	1,1-Dichloroethane	SU	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5U	100-41-4	Ethylbenzene	50
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	50
71-55-6	1,1,1-Trichloroethane	5U			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	11 U			
75-27-4	Bromodichloromethane	SU		4	,
78-87-5	1,2-Dichloropropene	5U		1 1	
10061-01-5	cis-1,3-Dichtoropropene	5 U		11 /	
79-01-6	Trichloroethene	5 U		y	
124-48-1	Dibromochloromethane	50	4	1/6/41	

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.

į

- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 1 of 2

Analis ID: 901206-035

Customer: J. KESSNER/R. SHUCK

Laboratory: Organic Mass Spectroscopy Laboratory File ID: 10664

Sample Matrix: SOIL

Customer Sample ID: N-115

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture: 4.8 Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug	/Kg		CAS			ug/Kg	
•••••		•	••••	••••	•••••	***************************************		•••••	
108-95-2	Phenol		900U	1	06-47-8	4-Chloroaniline		900U	
111-44-4	bis(2-Chloroethyl)ether		900U		87-68-3	Hexachlorobutadiene		900U	
95-57-8	2-Chlorophenol		900U	!	59-50-7	4-Chloro-3-methylphenol		9000	
541-73-1	1,3-Dichtorobenzene		900U		91-57-6	2-Methylnaphthalene		9000	
106-46-7	1,4-Dichlorobenzene		900U		77-47-4	Hexachlorocyclopentadiene		9000	
100-51-6	Benzyl Alcohol		900U		88-06-2	2,4,6-Trichlorophenol		900U	
95-50-1	1,2-Dichlorobenzene		900U		95-95-4	2,4,5-Trichlorophenol		4300U	
95-48-7	2-Methylphenol		900U		91-58-7	2-Chioronaphthalene		9000	
108-60-1	bis(2-Chloroisopropyl)ether		900U		88-74-4	2-Nitroaniline		4300U	
106-44-5	4-Methylphenol		900U	1	31-11-3	Dimethylphthalate		9000	
621-64-7	N-Nitroso-di-n-propylamine		900U	2	08-96-8	Acenaphthylene		9000	
67-72-1	Hexachloroethane		900U		99-09-2	3-Nitroaniline		4300U	
98-95-3	Nitrobenzene		900U		83-32-9	Acenaph thene		9000	
78-59-1	Isophorone		900U		51-28-5	2,4-Dinitrophenol		43000	
88-75-5	2-Nitrophenol		900U	1	00-02-7	4-Nitrophenol		43000	
105-67-9	2,4-Dimethylphenol		900U	1	32-64-9	Dibenzofuran		9000	
65-85-0	Benzoic Acid	१०० स	19 -18 U	. 1	21-14-2	2,4-Dinitrotoluene		9000	
111-91-1	bis(2-Chloroethoxy)methane		900U	6	06-20-2	2,6-Dinitrotoluene		9000	
120-83-2	2,4-Dichlorophenol		900U		84-66-2	Diethylphthalate	900	230 10 -	u
120-82-1	1,2,4-Trichlorobenzene		900U	70	05-72-3	4-Chlorophenyi-phenyiether		9000	
91-20-3	Naphthalene		900U		86-73-7	Fluorene		9000	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-035

Customer Sample ID: N-115

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 10664

Sample Matrix: SOIL

Instrument ID: 5970#3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 12-DEC-1990

Date Analyzed: 14-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

1.0 Analyst: C MEEHAN

Associated Blank: 901213-028

QA File Number: NA

[]: Result has been Corrected for Spike

4.8

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	•••••	•••••	•••••	•••••
100-01-6	4-Nitroaniline	4300U	53-70-3	Dibenz(a,h)anthracene	9000
534-52-1	4,6-Dinitro-2-methylphenol	4300U	191-24-2	Benzo(g,h,i)perylene	9000
86-30-6	N-Nitrosodiphenylamine	9000			
101-55-3	4-Bromophenyl-phenylether	9000			
118-74-1	Hexachlorobenzene ·	9000			
87-86-5	Pentachlorophenol	4300U			
85-01-8	Phenanthrene	9000			
120-12-7	Anthracene	9000			
84-74-2	Di-n-butylphthalate	1700 B	u		
206-44-0	Fluoranthene	9000			
129-00-0	Pyrene	900U			
85-68-7	Butylbenzylphthalate	900U			
91-94-1	3,3'-Dichlorobenzidine	18000			
56-55-3	Benzo(a)anthracene	900U			
117-81-7	bis(2-Ethylhexyl)phthalate	-760 JB -	900U		
218-01-9	Chrysene	9000			
117-84-0	Di-n-octylphthalate	900U			
205-99-2	Benzo(b)fluoranthene	9000		1	
207-08-9	Benzo(k)fluoranthene	9000		1-1	
50-32-8	Benzo(a)pyrene	9000		10	
193-39-5	Indeno(1,2,3-cd)pyrene	9000		0 4/6/2	
Data Reporti	ing Qualifiers:			791	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHIC-SD-EN-TI-136, Rev. O Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Anal I	SI	D:	9012	06-	035

Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL

Level: (low/med): <u>LOW</u>
Dilution Factor: _____1.0

% Moisture: not dec. ____4.8 dec. _

Extraction: (SepF/Cont/Sonc) SoxH

GPC Cleanup: (Y/N) N

Number TICs found: 14

Customer Sample ID: H-115

Customer: J. KESSHER/R. SHUCK

File ID: 10664

Date Received: 6-DEC-1990

Date Analyzed: 14-DEC-1990

Date Extracted: 12-DEC-1990

pH: ______

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
	2-Pentanone, 4-hydroxy-4-methy	} .97		•
	2-Pyrrolidinone, 1-methyl-	9.80		-JB-
3	Unknown	1 12.52	600	J
	Phenol,(1,1-dimethylethyl)-4-m	1 16.45	-410	-JD-
5	Unknown (Alkyl Hydrocarbon)	21.69	410	- √0-
6	Unknown (Alkyl Hydrocarbon)	1 23.73	440	- √0 -
7	Unknown (sat'd Hydrocarbon)	- 25.60	700	√8 -
	1,2-Benzenedicarboxylic acid,b	25.97	570	J
9. 123-79-5	Dioctyl Adipate	26.38	1600	J
10	Unknown (sat'd Hydrocarbon)	-26.48	700	-10-
11	Unknown	27.79	1700	J
12	Unknown (Alkyl Hydrocarbon)	- 20.12	490	 18-
13	Unknown (sat'd Hydrocarbon)	32.59	390	J
14	Unknown	33.73	380	j
15		1		1
16		1		1
17.		1		1
18.				1
19		1		[
20	1	1		1
21,	1			!
22	<u> </u>	1	<u> </u>	<u></u>
23	<u> </u>			
24	<u> </u>			
25	<u> </u>	1		<u> </u>
26.				1
27.		1		l
28	1			i
29	1			i i
30.	1	1		i

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

ANALYSIS DATA REPORT

Analis ID: 901206-035

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-115

Customer: J. KESSNER/R. SHUCK

File ID: 07619

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number: Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture: 5

Percent Moisture (decanted):

Dilution Factor:

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5u
74-83-9		110	71-43-2		5U
75-01-4		110	10061-02-6		50 50
75-00-3	•	110		Bromoform	5U
75-09-2	Methylene Chloride	5U		4-Hethyl-2-pentanone	110
	Acetone	34 U		2-Hexanone	110
	Carbon Disulfide	5U	-	Tetrachloroethene	Su
	1,1-Dichloroethene	Su		1,1,2,2-Tetrachloroethane	5U
	1,1-Dichloroethane	5U	108-88-3	Toluene	5U
	1,2-Dichloroethene (total)	5 u	108-90-7	Chlorobenzene	5u
67-66-3		5υ	100-41-4	Ethylbenzene	5U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	•	5 U
78-93-3	2-Butanone	1 1U		Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U		, , , ,	
	Carbon Tetrachloride	5 U			
108-05-4	Vinyl-Acetate	110			
	Bromodichloromethane	Su			
78-87-5	1,2-Dichloropropane	SU		11	
10061-01-5	cis-1,3-Dichloropropene	Su		17	
79-01-6	Trichloroethene	5U		10.	
124-48-1	Dibromochloromethane	50	•	1 4/6/91	
Data Reporti	ing Qualifiers:			7.71	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 1 of 2

AnaLIS ID: 901206-036

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-116 Customer: J. KESSNER/R. SHUCK

File ID: >14465

Sample Matrix: SOIL

Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Hoisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA file Number: NA

[] : Result has been Corrected for Spike

6.3

		ug/Kg	CAS			ug/Kg
•••••	•••	•••••	•••••	***************************************		•••••
Phenol	R	9900	106-47-8	4-Chloroaniline	R	9 90U
bis(2-Chloroethyl)ether	R	990U	87-68-3	Hexach Lorobutadiene	R	990U
2-Chlorophenol	R	9900	59-50-7	4-Chloro-3-methylphenol	R	990U
1,3-Dichlorobenzene	R	9900	91-57-6	2-Methylnaphthalene	R	990U
1,4-Dichlorobenzene	R	990U	77-47-4	Hexachlorocyclopentadiene	R	990U
Benzyl Alcohol	R	990U	88-06-2	2,4,6-Trichlorophenol	R	990U
1,2-Dichlorobenzene	R	990U	95-95-4	2,4,5-Trichlorophenol	R	4800U
2-Methylphenol	R	990U	91-58-7	2-Chloronaphthalene	R	990U
bis(2-Chloroisopropyl)ether	R	990U	88-74-4	2-Nitroaniline	R	4800U
4-Methylphenol	R	990U	131-11-3	Dimethylphthalate	R	990U
N-Nitroso-di-n-propylamine	R	990U	208-96-8	Acenaphthylene	R	9900
Hexachloroethane	R	990U	99-09-2	3-Nitroaniline	R	4800U
Nitrobenzene	R	9 90U	83-32-9	Acenaphthene	R	9900
1 sophorone	R	9900	51-28-5	2,4-Dinitrophenol	R	4800U
2-Nitrophenol	R	990U	100-02-7	4-Nitrophenol	R	4800U
2,4-Dimethylphenol	R	9900	132-64-9	Dibenzofuran	R	9900
Benzoic Acid	R	4800U	121-14-2	2,4-Dinitrotoluene	R	9900
bis(2-Chloroethoxy)methane	R	990U	606-20-2	2,6-Dinitrotoluene	R	9900
2,4-Dichlorophenol	R	990U	84-66-2	Diethylphthalate	R	9900
1,2,4-Trichlorobenzene	R	990U	7005-72-3	4-Chlorophenyl-phenylether	R	990U
Naphthalene .	R	990U	86-73-7	Fluorene	R	9900
	2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	bis(2-Chloroethyl)ether 2-Chlorophenol R 1,3-Dichlorobenzene R 1,4-Dichlorobenzene R Benzyl Alcohol R 1,2-Dichlorobenzene R 2-Methylphenol R 6-Methylphenol R N-Nitroso-di-n-propylamine R Kitrobenzene R Isophorone R 2-Nitrophenol R R 2,4-Dimethylphenol R R R R R R R R R R R R R R R R R R R	Phenol R 990U bis(2-Chloroethyl)ether R 990U 2-Chlorophenol R 990U 1,3-Dichlorobenzene R 990U 1,4-Dichlorobenzene R 990U 1,4-Dichlorobenzene R 990U 1,2-Dichlorobenzene R 990U 2-Methylphenol R 990U 2-Methylphenol R 990U 4-Methylphenol R 990U N-Nitroso-di-n-propylamine R 990U Hexachloroethane R 990U Nitrobenzene R 990U Lophorone R 990U 2,4-Dimethylphenol R 990U 2,4-Dimethylphenol R 990U 2,4-Dichloroethoxy)methane R 990U 2,4-Dichlorophenol R 990U 1,2,4-Trichlorobenzene R 990U	Phenol R 990U 106-47-8 bis(2-Chloroethyl)ether R 990U 87-68-3 2-Chlorophenol R 990U 59-50-7 1,3-Dichlorobenzene R 990U 91-57-6 1,4-Dichlorobenzene R 990U 77-47-4 Benzyl Alcohol R 990U 88-06-2 1,2-Dichlorobenzene R 990U 95-95-4 2-Methylphenol R 990U 91-58-7 bis(2-Chloroisopropyl)ether R 990U 88-74-4 4-Methylphenol R 990U 131-11-3 N-Nitroso-di-n-propylamine R 990U 208-96-8 Hexachloroethane R 990U 83-32-9 Isophorone R 990U 83-32-9 Isophorone R 990U 100-02-7 2,4-Dimethylphenol R 990U 132-64-9 Benzoic Acid R 4800U 121-14-2 bis(2-Chloroethoxy)methane R 990U 86-20-2	Phenol R 990U 106-47-8 4-Chloroaniline bis(2-Chloroethyl)ether R 990U 87-68-3 Hexachlorobutadiene 2-Chlorophenol R 990U 59-50-7 4-Chloro-3-methylphenol 1,3-Dichlorobenzene R 990U 91-57-6 2-Methylnaphthalene 1,4-Dichlorobenzene R 990U 77-47-4 Hexachlorocyclopentadiene Benzyl Alcohol R 990U 88-06-2 2,4,6-Trichlorophenol 1,2-Dichlorobenzene R 990U 95-95-4 2,4,5-Trichlorophenol 2-Methylphenol R 990U 91-58-7 2-Chloronaphthalene bis(2-Chloroisopropyl)ether R 990U 88-74-4 2-Nitroaniline 4-Methylphenol R 990U 131-11-3 Dimethylphthalate N-Nitroso-di-n-propylamine R 990U 208-96-8 Acenaphthylene Hexachloroethane R 990U 99-09-2 3-Nitroaniline Nitrobenzene R 990U 83-32-9 Acenaphthene Isophorone R 990U 51-28-5 2,4-Dinitrophenol 2-Nitrophenol R 990U 100-02-7 4-Nitrophenol 2,4-Dimethylphenol R 990U 132-64-9 Dibenzofuran Benzoic Acid R 4800U 121-14-2 2,4-Dinitrotoluene bis(2-Chloroethoxy)methane R 990U 84-66-2 Diethylphthalate 1,2,4-Trichlorobenzene R 990U 7005-72-3 4-Chlorophenyl-phenylether	Phenol R 990U 106-47-8 4-Chloroaniline R bis(2-Chloroethyl)ether R 990U 87-68-3 Hexachlorobutadiene R 2-Chlorophenol R 990U 59-50-7 4-Chloro-3-methylphenol R 1,3-Dichlorobenzene R 990U 91-57-6 2-Methylnaphthalene R 1,4-Dichlorobenzene R 990U 77-47-4 Hexachlorocyclopentadiene R Benzyl Alcohol R 990U 88-06-2 2,4,6-Trichlorophenol R 1,2-Dichlorobenzene R 990U 95-95-4 2,4,5-Trichlorophenol R 2-Methylphenol R 990U 91-58-7 2-Chloronaphthalene R bis(2-Chloroisopropyl)ether R 990U 88-74-4 2-Nitroaniline R 4-Methylphenol R 990U 131-11-3 Dimethylphthalate R N-Nitroso-di-n-propylamine R 990U 208-96-8 Acenaphthylene R Hexachloroethane R 990U 83-32-9 Acenaphthene R Nitrobenzene R 990U 83-32-9 Acenaphthene R 1sophorone R 990U 100-02-7 4-Nitrophenol R 2-Nitrophenol R 990U 100-02-7 4-Nitrophenol R 2,4-Dimethylphenol R 990U 121-14-2 2,4-Dinitrotoluene R bis(2-Chloroethoxy)methane R 990U 84-66-2 Diethylphthalate R 1,2,4-Trichlorobenzene R 990U 7005-72-3 4-Chlorophenyl-phenylether R

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Analis ID: 901206-036

Customer Sample ID: N-116

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14465

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0 Analyst: AK HEADRICK

Percent Moisture (decanted):

6.3

QA File Number: NA

Associated Blank: 901214-083

[]: Result has been Corrected for Spike

CAS			ug/Kg		CAS			ug/Kg
100-01-6	4-Nitroaniline	R	48000		53-70-3	Dibenz(a,h)anthracene	R	9900
534-52-1	4,6-Dinitro-2-methylphenol	R	4800U			Benzo(g,h,i)perylene	R	9900
86-30-6	N-Nitrosodiphenylamine	R	990U					
101-55-3	4-Bromophenyl-phenylether	R	9900					
118-74-1	Hexachlorobenzene	R	9900					
87-86-5	Pentachlorophenol	R	4800U					
85-01-8	Phenanthrene	R	9900					
120-12-7	Anthracene	R	9900					
84-74-2	Di-n-butylphthalate		2900 🌤	u				
206-44-0	Fluoranthene	R	9900					
129-00-0	Pyrene	R	9900					
85-68-7	Butylbenzylphthalate	R	9900					
91-94-1	3,3'-Dichlorobenzidine	R	21000					
56-55-3	Benzo(a)anthracene	R	990U					
117-81-7	bis(2-Ethylhexyl)phthalate	R	9900					
218-01-9	Chrysene	R	990U					
117-84-0	Di-n-octylphthalate	R	9900					
205-99-2	Benzo(b)fluoranthene	R	9900			. /		
207-08-9	Benzo(k)fluoranthene	R	9900			17		
50-32-8	Benzo(a)pyrene	R	9900		1	T.1		
193-39-5	Indeno(1,2,3-cd)pyrene	R	990U			4/6/		
Data Reporti	ng Qualifiers:			,	J	19/91		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-036	Customer Sample ID: N-116
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: >14465
Level: (low/med): LOW	Date Received: _5-DEC-1990
Dilution Factor:1.0	Date Analyzed: 2-JAN-1991
X Moisture: not dec6.3 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/H) H	
	Concentration Units

Number TICs found: 18 (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	[RT]	EST. CONC.	
	2 Z-Pentanone, 4-hydroxy-4-methy	•	14000	•
2	UNKNOWN	6.06	420	J
3	UNKNOWN ALCOHOL	-6.34	540	- 40-
4	UNKNOWN ALCOHOL	13.88	3800	 JD-
5	UNKNOWN	17.28	460	₩.
6	UNKNOWN	-20.91	8 700	10
7	UNKNOWN_HYDROCARBON	23.78	710	 J B-
8	UNKNOWN HYDROCARBON	-23.90	570	-JB-
9	UNKNOWN PHTHALATE ESTER	24,40	700	 JB -
0	UNKNOWN	24.84	840	J
1	UNKNOWN HYDRICARBON	- 25.10	800	 √0
2	UNKNOWN HYDROCARBON	26.36	730	 J B-
3	UNKNOWN HYDROCARBON	27.56	1900	 JB
4	UNKNOWN HYDROCARBON	-28.71	2800	10
5	UNKNOWN HYDROCARBON	-29.82	2500	 18-
6	UNKNOWN HYDROCARBON	30.87	5500	1 30
7	UNKNOWN ALKOXY COMPOUND	31.80	1900	 J8 -
8	UNKNOWN HYDROCARBON	31,87	1400-	 38
9				1
.0		1		1
21.		1		1
2				î
23.		1		Ī
24			· · · · · · · · · · · · · · · · · · ·	
25		1		
26.	1			
27	1	1		1
28				I
9.				l
10.	1		1	ī

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Analis ID: 901206-036

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-116

Customer: J. KESSNER/R. SHUCK

File ID: 07586

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	•••••	•••••	***************************************	•••••
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	50
74-83-9	Bromomethane	110	71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5υ
75-09-2	Methylene Chloride	5 3 # U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	110
. 75-15-0	Carbon Disulfide	50	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	50	79-34-5	1,1,2,2-Tetrachloroethane	50
75-34-3	1,1-Dichloroethane	5 U	108-88-3	Toluene	50
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5บ
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl. Acetate	110			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	50			
10061-01-5	cis-1,3-Dichloropropene	5 u			
79-01-6	Trichloroethene	Su		,	
124-48-1	Dibromochloromethane	50		11	
Data Reporti	ing Qualifiers:			J 4/6/9,	

Data Reporting Qualifiers:

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-036	Customer Sample ID: N-116
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: <u>07586</u>
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution Factor:1.0	Date Analyzed: 10-DEC-1990
% Hoisture: not dec6	

Number TICs found: _1

Concentration Units (ug/L or ug/Kg): ug/Kg

J. 1165 10010	• -	(ug/t of	oalval: palita	
CAS NUMBER	COMPOUND NAME		EST. CONC.	
	Freon 113	•		•
		i	1	i i
		1	ì	1
		i) 	<u></u>
		1	!	l
	1	i	ļ	<u> </u>
	i	ı	i	<u> </u>
			1	[
		1	1	1
•	[i	1	<u> </u>
		1	1	1
		ì	1	!
	4	İ	i	1
		- 	! !	
		i	<u> </u>	!
	1	<u>. L </u>	<u> </u>	<u>'</u>
·	1		<u> </u>	1
	1	<u> </u>	<u>' </u>	1
•	1	1	<u> </u>	i
•	į	1	<u>† </u>	<u> </u>
•	<u> </u>	1	1	1
	1	1	1	1
•	1	1	1	
•	1	i	İ	ì
•		i	1	l
·		Ī	ĺ	Ī
•		1	1	1
•				1
•		1	1	
•		1	1	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aidol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0

ANALYSIS DATA REPORT

Page 1 of Z

Analis ID: 901206-037

Authorized By: D. C. Canada

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-117

Customer: J. KESSNER/R. SHUCK

File ID: >14466

6.5

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0 Dilution Factor:

Percent Moisture: Percent Moisture (decanted):

Anelyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
108-95-2	Phenol		9900	104-47-8	4-Chioroaniline		990u
111-44-4		R	990U	87-68-3	Hexachlorobutadiene	R	9900
•	bis(2-Chloroethyl)ether						990U
95-57-8	2-Chlorophenol	R	9900		4-Chloro-3-methylphenol	R	
541-73-1	1,3-Dichlorobenzene	R	9900		2-Methylnaphthalene	R	990U
106-46-7	1,4-Dichlorobenzene	R	990U	77-47-4	Hexachlorocyclopentadiene	R	990U
100-51-6	Benzyl Alcohol	R	990U	88-06-2	2,4,6-Trichlorophenol	R	9900
95-50-1	1,2-Dichlorobenzene	R	990U	95-95-4	2,4,5-Trichlorophenol	R	4800U
95-48-7	2-Methylphenol	R	990U	91-58-7	2-Chloronaphthalene	R	9900
108-60-1	bis(2-Chloroisopropyl)ether	R	990U	88-74-4	2-Nitroaniline	R	4800U
106-44-5	4-Methylphenol	R	9900	131-11-3	Dimethylphthalate	R	990U
621-64-7	N-Nitroso-di-n-propylamine	R	990U	208-96-8	Acenaphthylene	R	990U
67-72-1	Hexachloroethane	R	990U	99-09-2	3-Nitroaniline	R	4800U
98-95-3	Nitrobenzene	R	990U	83-32-9	Acenaphthene	R	9 90U
78-59-1	Isophorone	R	990U	51-28-5	2,4-Dinitrophenol	R	4800U
88-75-5	2-Nitrophenol	R	990U	100-02-7	4-Nitrophenol	R	4800U
105-67-9	2,4-Dimethylphenol	R	990U	132-64-9	Dibenzofuran	R	990U
65-85-0	Benzoic Acid	R	4800U	121-14-2	2,4-Dinitrotoluene	R	990U
111-91-1	bis(2-Chloroethoxy)methane	R	990U	606-20-2	2,6-Dinitrotoluene	R	9 90U
120-83-2	2,4-Dichlorophenol	R	990U	84-66-2	Diethylphthalate	R	9 90U
120-82-1	1,2,4-Trichlorobenzene	R	990U	7005-72-3	4-Chlorophenyl-phenylether	R	9 90U
91-20-3	Naphthalene	R	990U	86-73-7	Fluorene	R	9 90u

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-037

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-117

Customer: J. KESSNER/R. SHUCK

File ID: >14466

Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

Sample Matrix: SOIL

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

6.5

CAS			ug/Kg	CAS			g/Kg
•••••	•••••	••	•••••	*********		• • • •	•••••
100-01-6	4-Nitroaniline	R	4800U	53-70-3	Dibenz(a,h)anthracene	R	990U
534-52-1	4,6-Dinitro-2-methylphenol	R	4800U	191-24-2	Benzo(g,h,i)perylene	R	990U
86-30-6	M-Nitrosodiphenylamine	R	990U				
101-55-3	4-Bromophenyl-phenylether	R	990U				
118-74-1	Hexach Lorobenzene	R	990U				
87-86-5	Pentachlorophenol	R	4800U				
85-01-8	Phenanthrene	R	990U				
120-12-7	Anthracene	R	990U				
84-74-2	Di-n-butylphthalate		1400 %	u			
206-44-0	Fluoranthene	R	990U				
129-00-0	Pyrene	R	990U				
85-68-7	Butylbenzylphthalate	R	990U				
91-94-1	3,3'-Dichlorobenzidine	R	2000U				
56-55-3	Benzo(a)anthracene	R	9900				
117-81-7	bis(2-Ethylhexyl)phthalate	R	9900				
218-01-9	Chrysene	R	9900		1		
117-84-0	Di-n-octylphthalate	R	990U		1-1		
205-99-2	Benzo(b)fluoranthene	R	990U		10		
207-08-9	Benzo(k)fluoranthene	R	990U		X 4/1		
50-32-8	Benzo(a)pyrene	R	990U	//	16/01		
193-39-5	Indeno(1,2,3-cd)pyrene	R	990U	U	/ ***		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-037	Customer Sample ID: N-117
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: >14466
Level: (low/med): LOW	Date Received: <u>5-DEC-1990</u>
Dilution Factor:1.0	Date Analyzed: 2-JAN-1991
% Hoisture: not dec6.5 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:

Extraction: (SepF/Cont/Sonc) SoxH

GPC Cleanup: (Y/N) N

Number TICs found: 18

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	•
		•	1	•
1123-42-2	2-Pentanone, 4-hydroxy-4-methy		17000	-JAD-
2	UNKNOWN	6.06		
3	UNKNOWN ALCOHOL	6.34-		
4	UNKNOWN ALCOHOL	-13.91 -		-10-
5	UNKNOWN	17,20	510	
6	UNKHOWN	20.94	5800	18
7	UNKNOWN HYDROCARBON	23.79	790_	 18
8	UNKNOWN HYDROCARBON	-23.92	++0	 48
9	UNKNOWN PHTHALATE ESTER	-24,70		<u> </u>
10	UNKNOWN HYDROCARBON	24,87	750	J
11	UNKNOWN HYDROCARBON	25.12	730	- √0-
12	UNKNOWN HYDROCARBON	-26.58	560	 18 -
13.	UNKNOWN HYDROCARBON	-27.59	1200	
14	UNKNOWN HYDROCARBON	28.74	1700	
15	UNKNOWN HYDROCARBON	-29,83	1500	1-18-
16	UNKNOWN HYDROCARBON	-30.89	1400	 JD -
17	UNKNOWN ALKOXY COMPOUND	31.85	1800	1-18-
18	UNKNOWN HYDROCARBON	31,90	1200	 J B-
19	I	1		ī
20	1	1	Ī	Î
21	1	ì	1	1
22	!	<u>1</u>	!	1
23	1	i	l	1
24	1	1	<u> </u>	<u> </u>
	<u> </u>	I	ł	
25	<u> </u>	<u> </u>	1	
26	1	<u> </u>		<u></u>
27	1	<u>. </u>	<u></u> 1	1
28		<u> </u>	<u> </u>	<u> </u>
29	<u> </u>	1	<u> </u>	
30.	<u> </u>	I	<u> </u>	<u> </u>

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Page 1 of 1

Analis ID: 901206-037

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-117

Customer: J. KESSNER/R. SHUCK

File ID: 07587

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number: Date Sample Received: 5-DEC-1990

Authorized By: D. C. Canada

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Hoisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg ·	CAS		ug/Kg
•••••	•••••	•••••	•••••	•••••	•••••
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	110	71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chioroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 5 18- 4	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	11 4-18 0	A 591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5U	127-18-4	Tetrachloroethene	SU
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	5 u
75-34-3	1,1-Dichloroethane	SU	108-88-3	Toluene	5บ
540-59-0	1,2-Dichloroethene (total)	50	108-90-7	Chlorobenzene	5 u
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	5 u			
10061-01-5	cis-1,3-Dichloropropene	5 u		. 1	
79-01-6	Trichloroethene	5 U		1-1	
124-48-1	Dibromochloromethane	รบ		10.1	
Data Reporti	ng Qualifiers:		4	1 4/6/91	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-037	Customer Sample ID: N-117
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK
Sample Matrix: SOIL	File 10: <u>07587</u>
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution Factor:1.0	Date Analyzed: 10-DEC-1990
% Moisture: not dec7	
	Concentration Units
Number TiCs found: _1	(ug/L or ug/Kg): <u>ug/Kg</u>

CAS NUMBER	COMPOUND NAME	,	EST. CONC.	•
1. 76-13-1		- 5.18	•	•
		1	1	1
2		<u> </u>	<u> </u>	<u> </u>
3	i	<u>l </u>	<u>) </u>	<u> </u>
4		<u>[</u>	! !	
5	1	<u>. </u>	!	
6		<u> </u>	<u>. </u>	<u>1</u> I
7		!	<u> </u>	
8		<u>t</u>	!	<u>l</u> I
9		<u> </u>	<u> </u>	<u> </u>
0	1	1	<u> </u>	<u> </u>
1	1	1	<u> </u>	<u>. </u>
2	<u> </u>	<u> </u>	<u>!</u>	<u> </u>
3	1	<u> </u>	<u> </u>	}
4	<u></u>	<u> </u>	<u> </u>	<u> </u>
5	<u> </u>	<u> </u>	<u> </u>	<u> </u>
16,	<u> </u>		<u> </u>	<u> </u>
17		<u> </u>	<u> </u>	<u> </u>
8		i	ļ	<u> </u>
19	<u> </u>	L	1	<u> </u>
20	<u> </u>	<u> </u>	<u> </u>	<u> </u>
21	<u> </u>	<u> </u>	<u> </u>	<u> </u>
22	<u> </u>	<u> </u>	<u> </u>	1
23	L	<u> </u>	<u> </u>	<u> </u>
24	<u> </u>	<u> </u>	<u> </u>]
25	Ĺ	<u></u>	1	1
26	<u> </u>	<u> </u>	<u> </u>	1
27		1	<u> </u>	<u> </u>
28		1	1	1
29		1	1	1
30.	1	1	1	1

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Page 1 of 2

Analis ID: 901206-038

Customer Sample ID: N-118

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14467

Sample Matrix: SOIL Requisition Number:

Instrument ID: HP-5985
Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Hoisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

7.1

CAS			ug/Kg	CAS			ug/Kg
•••••					•••••	••	
108-95-2	Phenol	R	1000U	106-47-8	4-Chloroaniline	R	1000U
111-44-4	bis(2-Chloroethyl)ether	R	1000U	87-68-3	Hexachlorobutadiene	R	1000U
95-57-8	2-Chlorophenol	R	1000U	59-50-7	4-Chloro-3-methylphenol	R	1000U
541-73-1	1,3-Dichlorobenzene	R	1000U	91-57-6	2-Methylnaphthalene	R	1000U
106-46-7	1,4-Dichlorobenzene	R	10000	77-47-4	Hexachlorocyclopentadiene	R	1000U
100-51-6	Benzyi Alcohol	R	1000U	88-06-2	2,4,6-Trichlorophenol	R	1000U
95-50-1	1,2-Dichlorobenzene	R	1000U	95-95-4	2,4,5-Trichlorophenol	R	5100U
95-48-7	2-Methylphenol	R	1000U	91-58-7	2-Chloronaphthalene	R	10000
108-60-1	bis(2-Chloroisopropyl)ether	R	1000U	88-74-4	2-Nitroaniline	R	5100U
106-44-5	4-Methylphenol	R	1000U	131-11-3	Dimethylphthalate	R	1000U
621-64-7	N-Nitroso-di-n-propylamine	R	1000U	208-96-8	Acenaphthylene	R	1000U
67-72-1	Hexachloroethane	R	10000	99-09-2	3-Nitroaniline	R	5100U
98-95-3	Nitrobenzene	R	1000U	83-32-9	Acenaphthene	R	1000U
78-59-1	Isophorone	R	10000	51-28-5	2,4-Dinitrophenol	R	5100U
88-75-5	2-Nitrophenol	R	1000U	100-02-7	4-Nitrophenol	R	5100U
105-67-9	2,4-Dimethylphenol	R	1000U	132-64-9	Dibenzofuran	R	10000
65-85-0	Benzoic Acid	R	5100U	121-14-2	2,4-Dinitrotoluene	R	10000
111-91-1	bis(2-Chloroethoxy)methane	R	1000U	606-20-2	2,6-Dinitrotoluene	R	10000
120-83-2	2,4-Dichlorophenol	R	1000U	84-66-2	Diethylphthalate	R	10000
120-82-1	1,2,4-Trichlorobenzene	R	1000U	7005-72-3	4-Chlorophenyl-phenylether	R	10000
91-20-3	Naphthalene	R	1000U	86-73-7	Fluorene	R	1000U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-038

Customer Sample ID: N-118

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14467

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP Dilution Factor: 1.0

Percent Moisture:

Analyst: AK HEADRICK

Percent Moisture (decanted):

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

7.1

CAS			ug/Kg		CAS				ug/Kg
100-01-6	4-Nitroaniline	R	5100U		53-70-3	Dibenz(a,h)anthracen	le 1	 R	10000
534-52-1	4,6-Dinitro-2-methylphenol	R	5100U		191-24-2	Benzo(g,h,i)perylene		R	1000U
86-30-6	N-Nitrosodiphenylamine	R	10000						
101-55-3	4-Bromophenyl-phenylether	R	1000U						
118-74-1	Hexachlorobenzene	R	10000						
87-86-5	Pentachlorophenol	R	5100U						
85-01-8	Phenanthrene	R	10000						
120-12-7	Anthracene	R	1000U						
84-74-2	Di-n-butylphthalate		1400 %	u					
206-44-0	Fluoranthene	R	1000U						
129-00-0	Pyrene	R	1000U						
85-68-7	Butylbenzylphthalate	R	1000U						
91-94-1	3,3'-Dichlorobenzidine	R	2100U						
56-55-3	Benzo(a)anthracene	R	1000U						
117-81-7	bis(2-Ethylhexyl)phthalate	R	10000						
218-01-9	Chrysene	R	10000						
117-84-0	Di-n-octylphthalate	R	10000						
205-99-2	Benzo(b)fluoranthene	R	10000						
207-08-9	Benzo(k)fluoranthene	R	10000				/		
50-32-8	Benzo(a)pyrene	R	10000				11		
193-39-5	Indeno(1,2,3-cd)pyrene	R	10000			1	104/1		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0

Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Anal I	S ID:	9012	206-038

Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL

Level: (low/med): LOW

Dilution Factor: _____1.0

% Moisture: not dec. _____7.1 dec.

Extraction: (SepF/Cont/Sonc) SoxH

GPC Cleanup: (Y/N) N

Number TICs found: 17

Customer !	Sample ID: N-118
Customer:	J. KESSHER/R. SHUCK

File ID: >14467

Date Received: 5-DEC-1990 Date Analyzed: 2-JAN-1991 Date Extracted: 13-DEC-1990

pH: ____

Concentration Units

(ug/L or ug/Kg): ug/Kg

	NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
*****	========	***********************	=======================================	*********	=======
1	123-42-2	2-Pentanone, 4-hydroxy-4-methy	3.69	17000	JAB
		UNKNOWN	6.05	500	J
3		UNKNOWN ALCOHOL	6,33	710	- 18-
4		UNKNOWN ALCOHOL	13.88	3000	J
5		UNKNOWN	17.26	480	- 18-
6		UNKNOWN	20.91	6500	- 18-
7		UNKNOWN HYDROCARBON	-23.76 -	730	- JD -
8		UNKNOWN HYDROCARBON	-23.90	490	- 18-
9		UNKNOWN	24.84	460	J
		UNKNOWN HYDROCARBON	-25.09	750	- 48 -
		UNKNOWN HYDROCARBON	26.35	520	
		UNKNOWN HYDROCARBON	27.56	1200	- 18-
13		UNKNOWN HYDROCARBON	28.71 -	1900	18
14		UNKNOWN HYDROCARBON	29.80	1800	18.
15		UNKNOWN HYDROCARBON	30,86	1700	- J0
		UNKNOWN ALKOXY COMPOUND	31.80	2000	 JB -
17		UNKNOWN PHTHALATE ESTER	32.37	1100	J
18					1
					<u> </u>
					<u> </u>
23					l
25					ļ
					l
				l	i
				·	
			1]	<u>' </u>
30.		· · · · · · · · · · · · · · · · · · ·	1	<u> </u>	l

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Page 1 of 1

Analis ID: 901206-038 Customer Sample ID: N-118

Laboratory: Organic Mass Spectroscopy Laboratory Customer: J. KESSNER/R. SHUCK

File ID: 07588 Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture: 7 Dilution Factor: 1.0

Percent Hoisture (decanted): Analyst: SL STAFFORD

Associated Blank: 901210-025 QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg		CAS		ug/Kg
74-87-3	Chloromethane	11u		79-00-5	1,1,2-Trichloroethane	5u
74-83-9	Bromomethane	110			Benzene	5u
75-01-4	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	5 u
75-00-3	Chloroethane	110			Bromoform	5 u
75-09-2	Methylene Chloride	5-3-11	u	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110		591-78-6	2-Hexanone	1 1 u
75-15-0	Carbon Disulfide	5 U		127-18-4	Tetrachloroethene	5 0
75-35-4	1,1-Dichloroethene	5 U		79-34-5	1,1,2,2-Tetrachloroethane	5υ
75-34-3	1,1-Dichloroethane	50		108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	50		108-90-7	Chlorobenzene	Su
67-66-3	Chloroform	50		100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	50		100-42-5	Styrene	5 U
78-93-3	2-Butanone	110		1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	50				
56-23-5	Carbon Tetrachloride	5 U				
108-05-4	Vinyl Acetate	110				
75-27-4	Bromodichloromethane	50			,	
78-87-5	1,2-Dichloropropane	50			11	
10061-01-5	cis-1,3-Dichloropropene	5 u			11	
79-01-6	Trichloroethene	5 u			1011	
	Dibromochloromethane	50			0 16/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0

Oak Ridge K-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

(ug/L or ug/Kg): ug/Kg

AnaLIS ID: 901206-038	Customer Sample ID: N-118
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: 07588
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution Factor:1.0	Date Analyzed: 10-DEC-1990
% Moisture: not dec7	
	Concentration Units

Number TICs found: _1

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1	UNKHOWN	18.67	•]]]
2			<u> </u>	1
3		1	! 	<u>' </u>
4		1	! <u></u>	! !
5	1	1	<u> </u>	<u> </u>
6			l	<u> </u>
7		1		
8		i		<u></u>
9		1		<u> </u>
0		1	<u> </u>	i
1		1		1
2		1		i
3		1		1
4		1	!	<u> </u>
5				
6	1	1		
7				<u> </u>
8	1	1		
9		1		<u> </u>
0		1	<u> </u>	<u> </u>
1				<u> </u>
2		1	<u> </u>	l
3	1	1		<u> </u>
4	1	1		<u> </u>
5	1	1		<u> </u>
6	i	1		
7	·	<u> </u>		

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.

29.

- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Analis ID: 901206-041

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14470

Sample Matrix: SOIL

Customer Sample ID: N-119

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Hoisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

6.5

CAS		ug/Kg		CAS			ug/Kg
	•••••			•••••	•••••		
108-95-2	Phenol	R	1000U	106-47-8	4-Chloroaniline	R	10000
111-44-4	bis(2-Chloroethyl)ether	R	1000U	87-68-3	Hexachlorobutadiene	R	10000
95-57-8	2-Chlorophenol	R	1000U	59-50-7	4-Chloro-3-methylphenol	R	10000
541-73-1	1,3-Dichlorobenzene	R	1000U	91-57-6	2-Methylnaphthalene	R	10000
106-46-7	1,4-Dichlorobenzene	R	1000U	77-47-4	Mexachlorocyclopentadiene	R	10000
100-51-6	Benzyl Alcohol	R	10000	88-06-2	2,4,6-Trichlorophenol	R	10000
95-50-1	1,2-Dichlorobenzene	R	1000U	95-95-4	2,4,5-Trichlorophenol	R	5100U
95-48-7	2-Methylphenol	R	10000	91-58-7	2-Chloronaphthalene	R	1000U
108-60-1	bis(2-Chloroisopropyl)ether	R	1000U	88-74-4	2-Nitroaniline	R	5100U
106-44-5	4-Methylphenol	R	1000U	131-11-3	Dimethylphthalate	R	10000
621-64-7	N-Nitroso-di-n-propylamine	R	1000U	208-96-8	Acenaphthylene	R	10000
67-72-1	Hexachloroethane	R	1000U	99-09-2	3-Nitroaniline	R	5100U
98-95-3	Nitrobenzene	R	10000	83-32-9	Acenaphthene	R	10000
78-59-1	Isophorone	R	1000U	51-28-5	2,4-Dinitrophenol	R	5100ช
88-75-5	2-Nitrophenol	R	10000	100-02-7	4-Nitrophenol	R	5100U
105-67-9	2,4-Dimethylphenol	R	1000U	132-64-9	Dibenzofuran	R	10000
65-85-0	Benzoic Acid	R	5100U	121-14-2	2,4-Dinitrotoluene	R	10000
111-91-1	bis(2-Chloroethoxy)methane	R	1000U	606-20-2	2,6-Dinitrotoluene	R	10000
120-83-2	2,4-Dichlorophenol	R	10000	84-66-2	Diethylphthalate	R	10000
120-82-1	1,2,4-Trichlorobenzene	R	1000U	7005-72-3	4-Chlorophenyl-phenylether	R	10000
91-20-3	Naphthalene	R	1000U	86-73-7	Fluorene	R	10000

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-041

Customer Sample ID: N-119

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14470

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
•••••	***************************************	••		*******	••••••		• • • • • • • •
100-01-6	4-Nitroaniline	R	5100บ	53-70-3	Dibenz(a,h)anthracene	R	1000U
534-52-1	4,6-Dinitro-Z-methylphenol	R	5100U	191-24-2	Benzo(g,h,i)perylene	R	1000U
86-30-6	N-Nitrosodiphenylamine	R	1000U				
101-55-3	4-Bromophenyl-phenylether	R	1000U				
118-74-1	Hexachlorobenzene	R	10000				
87-86-5	Pentachlorophenol	R	5100U				
85-01-8	Phenanthrene	R	1000U				
120-12-7	Anthracene	R	1000U				
84-74-2	Di-n-butylphthalate		4800 % L	(
206-44-0	Fluoranthene	R	1000U				
129-00-0	Pyrene	R	10000				
85-68-7	Butylbenzylphthalate	R	1000U				
91-94-1	3,3'-Dichlorobenzidine	R	2100U				
56-55-3	Benzo(a)anthracene	R	10000				
117-81-7	bis(2-Ethylhexyl)phthalate	R	10000				
218-01-9	Chrysene	R	10000				
117-84-0	Di-n-octylphthalate	R	1000U		1		
205-99-2	Benzo(b)fluoranthene	R	1000U	1	1		
207-08-9	Benzo(k)fluoranthene	R	1000U	Λ	f		
50-32-8	Benzo(a)pyrene	R	1000U	/	<i>[</i>]		
193-39-5	Indeno(1,2,3-cd)pyrene	R	1000U		1/6/91		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-041

Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL

Level: (low/med): LOW
Dilution Factor: 1.0

% Moisture: not dec. _____6.5 dec.

Extraction: (SepF/Cont/Sonc) SoxH

GPC Cleanup: (Y/N) N

Number TICs found: 19

Customer Sample ID: N-119

Customer: J. KESSNER/R. SHUCK

File 10: >14470

Date Received: 5-DEC-1990
Date Analyzed: 2-JAN-1991
Date Extracted: 13-DEC-1990

pH: _____

Concentration Units

(ug/L or ug/Kg): ug/Kg

	NUMBER	COMPOUND NAME	RT	EST. CONC.	a
*****	********	***********************	== ========	**********	======
		UNKNOWN	4.39	490	J
		2-Pentanone, 4-hydroxy-4-methy	5.77	32000	-JAG-
		UNKNOWN	8.31	580	J
		UNKNOWN	10.71	910	J
5		UNKNOWN ALCOHOL	13.94	10000	
6		UNKNOWN ACID	15.58	460	J
7		UNKNOWN	20.95	18000	
8		UNKNOWN PHTHALATE ESTER	24.72	980	<u> </u>
		UNKNOWN	24.86	940	J
		UNKNOWN HYDROCARBON	25.12	- 630	- 48 -
11		UNKNOWN HYDROCARBON	-26.38	810	→8 -
12		UNKNOWN_HYDROCARBON	27.39	2700	-√B-
13		UNKNOWN HYDROCARBON	-28,7/	4300	LIB.
14		UNKNOWN HYDROCARBON	29,84	3700	-JB-
		UNKNOWN HYDROCARBON	30.89	2900	-JB
		UNKNOWN	31.82	3300	
		UNKNOWN HYDROCARBON	-31.89	1000	→ #8-
18		UNKNOWN HYDROCARBON	32.88	1100	J
	-	UNKNOWN ALKOXY COMPOUND	37.26	1200	J
			1		
21.			1		
22.					
			1		
			1		
			<u> </u>		
			<u> </u>		
27. <u> </u>			- [
		:			
	l				-
30.					

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

17 14/6/91

Page 1 of 1

Analis ID: 901206-041

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-119

Customer: J. KESSNER/R. SHUCK

File ID: 07591

Requisition Number:

Sample Matrix: SOIL

Instrument ID: 5970#2

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	***************************************	•	•••••	***************************************	
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5U
74-83-9	Bromomethane	110	71-43-2	Benzene	5 u
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5υ
75-09-2	Methylene Chloride	5 · 2 · # 以	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	11 % U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	50	108-88-3		5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5 u
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5u
78-93-3	2-Butanone	11U	1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5U			
108-05-4	Vinyl Acetate	1 10			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	5U		. 1	
10061-01-5	cis-1,3-Dichloropropene	50		17	
79-01-6	Trichtoroethene	5 u	•	10,,	
124-48-1	Dibromochloromethane	50	1	7/6/01	
Data Penorti	na Oualifiers		_	/ 7 /	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- 8 Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Analis ID: 901206-042

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-120

Customer: J. KESSNER/R. SHUCK

File ID: >14471

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

5.6

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

1.0

Percent Moisture: Percent Moisture (decanted):

Dilution Factor:

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
•••••	***************************************						
108-95-2	Phenol	R	990U	106-47-8	4-Chloroaniline	R	990u
111-44-4	bis(2-Chloroethyl)ether	R	990U	87-68-3	Hexach Lorobutadi ene	R	9900
95-57-8	2-Chlorophenol	R	990U	59-50-7	4-Chloro-3-methylphenol	R	9900
541-73-1	1,3-Dichlorobenzene	R	990U	91-57-6	2-Methylnaphthalene	R	9900
106-46-7	1,4-Dichlorobenzene	R	990U	77-47-4	Hexachlorocyclopentadiene	R	990u
100-51-6	Benzyi Alcohol	R	9900	88-06-2	2,4,6-Trichlorophenol	R	990u
95-50-1	1,2-Dichlorobenzene	R	990U	95-95-4	2,4,5-Trichlorophenol	R	4800U
95-48-7	2-Methylphenol	R	990U		2-Chloronaphthalene	R	990U
108-60-1	bis(2-Chloroisopropyl)ether	R	990U		2-Nitroaniline	R	4800U
106-44-5	4-Methylphenol	R	990U	131-11-3	Dimethylphthalate	R	9900
621-64-7	N-Nitroso-di-n-propylamine	R	990U	208-96-8	Acenaphthylene	R	990U
67-72-1	Hexachloroethane	R	990U	99-09-2	3-Nitroaniline	R	4800U
98-95-3	Nitrobenzene	R	990U	83-32-9	Acenaphthene	R	9901
78-59-1	Isophorone	R	990U	51-28-5	2,4-Dinitrophenol	R	4800U
88-75-5	2-Nitrophenol	R	990U	100-02-7	4-Nitrophenol	R	4800U
105-67-9	2,4-Dimethylphenol	R	990U	132-64-9		R	9900
65-85-0	Benzoic Acid	R	4800U	121-14-2		R	9900
111-91-1	bis(2-Chloroethoxy)methane	R	990U	606-20-2	·	R	990u
120-83-2	2,4-Dichlorophenol	R	990u	84-66-2	Diethylphthalate	R	9900
120-82-1	1,2,4-Trichlorobenzene	R	990U	7005-72-3	4-Chlorophenyl-phenylether	R	990u
91-20-3	Naphthalene	R	990U	86-73-7	Fluorene	R	990U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-042

Customer Sample ID: N-120

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14471

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Preparation Procedure Number:

Date Analyzed: 2-JAN-1991 Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

CAS			ug/Kg	CAS		1	ug/Kg
100-01-6	4-Nitroaniline	 R	4800U	53-70-3	Dibenz(a,h)anthracene	 R	9900
534-52-1	4,6-Dinitro-Z-methylphenol	R	4800U	191-24-2		R	990U
86-30-6	N-Nitrosodiphenylamine	R	9900				
101-55-3	4-Bromophenyl-phenylether	R	9900				
118-74-1	Hexachlorobenzene	R	990U				
87-86-5	Pentachlorophenol	R	4800U				
85-01-8	Phenanthrene	R	990U .				
120-12-7	Anthracene	R	9900				
84-74-2	Di-n-butylphthalate		3000 B. U				
206-44-0	Fluoranthene	R	9900				
129-00-0	Pyrene	R	9900				
85-68-7	Butylbenzylphthalate	R	990U				
91-94-1	3,3'-Dichlorobenzidine	R	2000U				
56-55-3	Benzo(a)anthracene	R	9 90U				
117-81-7	bis(2-Ethylhexyl)phthalate	R	990U				
218-01-9	Chrysene	R	9 90U				
117-84-0	Di-n-octylphthalate	R	990U				
205-99-2	Benzo(b)fluoranthene	R	990U		•		
207-08-9	Benzo(k)fluoranthene	R	990U		, 1		
50-32-8	Benzo(a)pyrene	R	9 90U		$A \neq A$		
193-39-5	Indeno(1,2,3-cd)pyrene	R	9900		104/61		
Data Reporti	ng Qualifiers:				0 1991		

Data Reporting Qualifiers:

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

Analis ID: 901206-043

Customer Sample ID: N-121

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK Sample Matrix: SOIL

File ID: >14472

Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

5.5

CAS			ug/Kg	CAS			ug/Kg
•••••	•••••			•••••	•••••	••	
108-95-2	Phenol	R	980U	106-47-8	4-Chloroaniline	R	980U
111-44-4	bis(2-Chloroethyl)ether	R	980U	87-68-3	Hexachlorobutadiene	R	9800
95-57-8	2-Chiorophenoi	R	980U	59-50-7	4-Chloro-3-methylphenol	R	980U
541-73-1	1,3-Dichlorobenzene	R	980U	91-57-6	2-Methylnaphthalene	R	980U
106-46-7	1,4-Dichlorobenzene	R	980U	77-47-4	Mexachlorocyclopentadiene	R	980U
100-51-6	Benzyl Alcohol	R	980U	88-06-2	2,4,6-Trichlorophenol	R	980U
95-50-1	1,2-Dichlorobenzene	R	980U	95-95-4	2,4,5-Trichlorophenol	R	4800U
95-48-7	2-Methylphenol	R	980U	91-58-7	2-Chloronaphthalene	R	980U
108-60-1	bis(2-Chloroisopropyl)ether	R	980U	88-74-4	2-Nitroaniline	R	4800U
106-44-5	4-Methylphenol	R	980U	131-11-3	Dimethylphthalate	R	980U
621-64-7	N-Nitroso-di-n-propylamine	R	980U	208-96-8	Acenaphthylene	R	980U
67-72-1	Hexachioroethane	R	980U	99-09-2	3-Nitroaniline	R	4800U
98-95-3	Nitrobenzene	R	980U	83-32-9	Acenaphthene	R	980U
78-59-1	Isophorone	R	980U	51-28-5	2,4-Dinitrophenol	R	4800U
88-75-5	2-Nitrophenol	R	980U	100-02-7	4-Nitrophenol	R	4800U
105-67-9	2,4-Dimethylphenol	R	980U	132-64-9	Dibenzofuran	R	980U
65-85-0	Benzoic Acid	R	4800U	121-14-2	2,4-Dinitrotoluene	R	980U
111-91-1	bis(2-Chloroethoxy)methane	R	980U	606-20-2	2,6-Dinitrotoluene	R	980U
120-83-2	2,4-Dichlorophenol	R ·	980U	84-66-2	Diethylphthalate	R	980U
120-82-1	1,2,4-Trichlorobenzene	R	980U	7005-72-3	4-Chlorophenyl-phenylether	R	980U
91-20-3	Naphthalene	R	980U	86-73-7	Fluorene	R	980U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

AnaLIS ID: 901206-043

Customer Sample 10: N-121

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14472

Sample Matrix: SOIL Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

1.0

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

5.5

CAS			ug/Kg	CAS			ug/Kg
100-01-6	4-Nitroaniline		٠			• ••	• • • • • • • • • • • • • • • • • • • •
		R	4800U	53-70-3	o record (a) my or restriction	R	980U
534-52-1	4,6-Dinitro-2-methylphenol	R	4800U	191-24-2	Benzo(g,h,i)perylene	R	980U
86-30-6	N-Nitrosodiphenylamine	R	980U				
101-55-3	4-Bromophenyl-phenylether	R	9800				
118-74-1	Hexach i orobenzene	R	980U				
87-86-5	Pentachlorophenol	R	4800U				
85-01-8	Phenanthrene	R	980U				
120-12-7	Anthracene	R	980U				
84-74-2	Di-n-butylphthalate		4300 % U				
206-44-0	Fluoranthene	R	9800				
129-00-0	Pyrene	R	980U				
85-68-7	Butylbenzylphthalate	R	980U				
91-94-1	3,3'-Dichlorobenzidine	R	2000U				
56-55-3	Benzo(a)anthracene	R	9800				
117-81-7	bis(2-Ethylhexyl)phthalate	R	9800				
218-01-9	Chrysene	R	980U				
117-84-0	Di-n-octylphthalate	R	980U		1		
205-99-2	Benzo(b)fluoranthene	R	980U	//	7		
207-08-9	Benzo(k)fluoranthene	R	980U	10			
50-32-8	Benzo(a)pyrene	R	980U	1	4/6/		
193-39-5	Indeno(1,2,3-cd)pyrene	R	980U	0	1991		

 $^{{\}tt U}\,$ - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Anatis ID: 901206-043	Customer Sample ID: N-121
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File 10: >14472
Level: (low/med): LOW	Date Received: _5-DEC-1990
Dilution Factor:1.0	Date Analyzed: 2-JAN-1991
% Moisture: not dec5.5 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	
	Concentration Units

Number TICs found: 19 (ug/L or ug/Kg): ug/Kg

	NUMBER	COMPOUND NAME	RT	EST. CONC.	a
		******************************		=======================================	
1	123-42-2	2-Pentanone, 4-hydroxy-4-methy	-5.75	30000	JAB-
2		UNKNOWN ALCOHOL	13.88	5500	- 18-
3		UNKHOWN	16.90	2300	- 18-
4		UNKNOWN	-17.28	3300	- 18-
5		UNKNOWN	19.69	17000	- JS -
6		UNKHOWN	-20.90	8000	- 18 -
7		UNKNOWN PHTHALATE ESTER	-24.68 -	840	- 48
8		UNKNOWN ALKOXY COMPOUND	24.84	980	J
9		UNKNOWN HYDROCARBON	25.09	780	- 18 -
10		ANTHRACENEDIONE	- 26.05	11000	- 10-
		UNKNOWN HYDROCARBON	76.36	770	- 18-
12		UNKNOWN HYDROCARBON	27.55	1800	-10-
		UNKNOWN HYDROCARBON	28.71	2800	- 18 -
		UNKNOWN HYDROCARBON	-29.68	1200	 JB
		UNKNOWN HYDROCARBON	29.80	2300	J
16		UNKNOWN HYDROCARBON	-30.86	1800	- 18-
	·	UNKNOWN HYDROCARBON	-31.80	7000	J ₿
		UNKNOWN HYDROCARBON	-31.86	1100	JB
19.		UNKNOWN ALKOXY COMPOUND	37.24	2600	J
					1
				1	!
			1		
			1	1	<u> </u>
24.			1	<u> </u>	l
				<u> </u>	i I
			l	 I	
			 1	l	
			<u> </u>	1	<u>'</u> I
29			l	<u> </u>	<u> </u>
30.				<u> </u>	l

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Page 1 of 1

Analis ID: 901206-043

Laboratory: Organic Mass Spectroscopy Laboratory

6

Customer Sample ID: N-121 Customer: J. KESSNER/R. SHUCK

File ID: 07593

Sample Matrix: SOIL

Instrument 10: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
74-87-3	Chloromethane	110	70.00.5	4.4.5	
				1,1,2-Trichloroethane	50
74-83-9		110	71-43-2		5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	Su
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 2 18 W	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	21 th U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	SU	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	5U
75-34-3	1,1-Dichloroethane	5U	108-88-3	Toluene	5 u
540-59-0	1,2-Dichloroethene (total)	5U	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	5U
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	SU
71-55-6	1,1,1-Trichloroethane	5 u			
56-23-5	Carbon Tetrachloride	5U			
108-05-4	Vinyl Acetate	1 1บ			
75-27-4	Bromodichloromethane	5 u		Λ	
78-87-5	1,2-Dichloropropane	5 U		1 %	
10061-01-5	cis-1,3-Dichloropropene	5 U			
79-01-6	Trichloroethene	5 u		1 4/1	
124-48-1	Dibromochloromethane	50		0 16/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Analis ID: 901206-044

Customer Sample ID: N-122

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14473

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

5.9

CAS			ug/Kg	CAS			ug/Kg
				••••••	***************************************	• • •	
108-95-2	Phenol	R	990U	106-47-8	4-Chloroaniline	R	990U
111-44-4	bis(2-Chloroethyl)ether	R	990U	87-68-3	Hexachlorobutadiene	R	9900
95-57-8	2-Chlorophenol	R	9900	59-50-7	4-Chloro-3-methylphenol	R	9900
541-73-1	1,3-Dichlorobenzene	R	9900	91-57-6	2-Methylnaphthalene	R	9900
106-46-7	1,4-Dichlorobenzene	R	990U	77-47-4	Mexachlorocyclopentadiene	R	990U
100-51-6	Benzyl Alcohol	R	9900	88-06-2	2,4,6-Trichlorophenol	R	99 0U
95-50-1	1,2-Dichlorobenzene	R	990U	95-95-4	2,4,5-Trichlorophenol	R	4800U
95-48-7	2-Methylphenol	R	9900	91-58-7	2-Chloronaphthalene	R	9900
108-60-1	bis(2-Chloroisopropyl)ether	R	9900	88-74-4	2-Nitroaniline	R	4800U
106-44-5	4-Methylphenol	R	9900	131-11-3	Dimethylphthalate	R	990U
621-64-7	N-Nitroso-di-n-propylamine	R	9900	208-96-8	Acenaphthylene	R	9900
67-72-1	Hexachloroethane	R	9900	99-09-2	3-Nitroaniline	R	4800U
98-95-3	Ni trobenzene	R	9900	83-32-9	Acenaphthene	R	990U
78-59-1	Isophorone	R	990U	51-28-5	2,4-Dinitrophenol	R	4800U
88-75-5	2-Nitrophenol	R	990U	100-02-7	4-Nitrophenol	R	4800U
105-67-9	2,4-Dimethylphenol	R	9900	132-64-9	Dibenzofuran	R	990U
65-85-0	Benzoic Acid	R	48000	121-14-2	2,4-Dinitrotoluene	R	9900
111-91-1	bis(2-Chloroethoxy)methane	R	9900	606-20-2	2,6-Dinitrotoluene	R	9900
120-83-2	2,4-Dichlorophenol	R	990U	84-66-2	Diethylphthalate	R	990U
120-82-1	1,2,4-Trichlorobenzene	R	9900	7005-72-3	4-Chlorophenyl-phenylether	R	9900
91-20-3	Naphthalene	R	990U		Fluorene	R	990U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

 $[\]ensuremath{\mathtt{B}}$ - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-044

Customer Sample ID: N-122

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14473

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Preparation Procedure Number:

Date Analyzed: 2-JAN-1991

Percent Moisture: 5.9 Analysis Procedure Number: BNA (CLP) NDP

Dilution Factor:

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

CAS			ug/Kg	CAS		·	ıg/Kg
100-01-6	4-Nitroaniline	 R	4800U	53-70-3	Nibers/a hlanthanna	••••	990U
534-52-1	4,6-Dinitro-2-methylphenol	R	4800U	191-24-2	Dibenz(a,h)anthracene	R	990U
86-30-6	N-Nitrosodiphenylamine	R	990U	171-24-2	Benzo(g,h,i)perylene	R	9900
	· · · · · · · · · · · · · · · · · · ·	•••					
101-55-3	4-Bromophenyl-phenylether	R	990U				
118-74-1	Hexach Lorobenzene	R	990U				
87-86-5	Pentachlorophenol	R	4800U				
85-01-8	Phenanthrene	R	990U				
120-12-7	Anthracene	R	990U				
84-74-2	Di-n-butylphthalate		7100 & U				
206-44-0	Fluoranthene	R	990U				
129-00-0	Pyrene	R	990U				
85-68-7	Butylbenzylphthalate	R	990U				
91-94-1	3,3'-Dichlorobenzidine	R	2000U				
56-55-3	Benzo(a)anthracene	R	990U				
117-81-7	bis(2-Ethylhexyl)phthalate	R	990U				
218-01-9	Chrysene	R	990U		•		
117-84-0	Di-n-octylphthalate	R	990U		1		
205-99-2	Benzo(b) fluoranthene	R	990U		\mathcal{F}		
207-08-9	Benzo(k)fluoranthene	R	990U	1	<i>il</i> .		
50-32-8	Benzo(a)pyrene	R	990U	// 7	16/		
193-39-5	Indeno(1,2,3-cd)pyrene	R	9 90U	"	(1/4)		

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-044	Customer Sample ID: N-122
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File 10: >14473
Level: (low/med): LOW	Date Received: _5-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 2-JAN-1991
% Moisture: not dec5.9 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:

GPC Cleanup: (Y/N) N

Number TICs found: 20

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	٩
	*****************************	,	•	*******
	2-Pentanone, 4-hydroxy-4-methy	5.69	19000_	
2	UNKNOWN	8.28		J
3	UNKNOWN ALCOHOL	13.99	5300	-40-
4	UNKNOWN ACID	15,61	460	<u> </u>
5	UNKNOWN	16:90	1900	- 48-
6	UNKNOWN	17.28	2200	- 10 -
7	UNKNOWN	19.71	24999	- 18-
8	UNKNOWN	-20.70	10000	
9	UNKNOWN PHTHALATE ESTER	24.68	1100	- 18
10	UNKNOWN HYDROCARBON	24.83	3400	J
11	UNKNOWN HYDROCARBON	25.09	710-	- ⊌8 -
12	ANTHRACENEDIONE	26.05	7800	
13	UNKNOWN HYDROCARBON	- 26.35	1	 18
14	UNKNOWN HYDROCARBON	27.55	2700	- 48-
15	UNKNOWN HYDROCARBON	28.70	3700	 JB -
16	UNKNOWN	29.67	2000	 JB
17	UNKNOWN HYDROCARBON	-29.81	3000	18
18	UNKNOWN HYDROCARBON	30.85	2400	 J8
19	UNKNOWN HYDROCARBON	31_79_	4800	JB.
20	UNKNOWN HYDROCARBON	-31.87	1790	 1 8
21.		<u> </u>	1	
22		<u> </u>	1	
23		1	l	ì
24.		1	1	1
25		I	1	1
26		1	<u> </u>	i
27		i	i	<u> </u>
28		 I	1	ì
29		1	1	1
30.	<u> </u>) I	1	

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Analis ID: 901206-044 Customer Sample ID: N-122

Laboratory: Organic Mass Spectroscopy Laboratory Customer: J. KESSNER/R. SHUCK

File ID: 07605 Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP Analysis Procedure Number: VOA (CLP) NDP

Percent Hoisture: 6 Dilution Factor: 1.0

Percent Hoisture (decanted): Analyst: GL HUDDLESTON

Associated Blank: 901211-004 QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	110	71-43-2	Benzene	5 u
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	50	79-34-5	1,1,2,2-Tetrachloroethane	5U
75-34-3	1,1-Dichloroethane	50	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5U
67-66-3	Chloroform	50	100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	5บ	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	5 U			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	SU			
10061-01-5	cis-1,3-Dichloropropene	50			
79-01-6	Trichloroethene	5 U			
124-48-1	Dibromochloromethane	5U			

- ${\tt U}\,$ Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL

Customer Sample ID: N-123

File ID: >14474

Analis ID: 901206-045

Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: 8NA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

8.5

CAS			ug/Kg	CAS			ug/Kg
400.05.3	Phone		1000U	104-/7-9	4-Chloroaniline	R	10000
108-95-2	Phenol				Hexachlorobutadiene	R	10000
111-44-4	bis(2-Chloroethyl)ether	R	1000U	87-68-3			
95-57-8	2-Chlorophenol	R	1000U		4-Chloro-3-methylphenol	R	1000U
541-73-1	1,3-Dichlorobenzene	R	1000U	91-57-6	2-Methylnaphthalene	R	1000U
106-46-7	1,4-Dichlorobenzene	R	1000U	77-47-4	Hexachlorocyclopentadiene	R	1000U
100-51-6	Benzyl Alcohol	R	1000U	88-06-2	2,4,6-Trichlorophenol	R	10000
95-50-1	1,2-Dichlorobenzene	R	1000U	95-95-4	2,4,5-Trichlorophenol	R	5200U
95-48-7	2-Methylphenol	R	1000U	91-58-7	2-Chloronaphthalene	R	1000U
108-60-1	bis(2-Chloroisopropyl)ether	R	1000U	88-74-4	2-Nitroaniline	R	5200U
106-44-5	4-Methylphenol	R	10000	131-11-3	Dimethylphthalate	R	10000
621-64-7	N-Nitroso-di-n-propylamine	R	10000	208-96-8	Acenaphthylene	R	10000
67-72-1	Hexachloroethane	R	10000	99-09-2	3-Nitroaniline	R	5 200U
98-95-3	Nitrobenzene	R	1000U	83-32-9	Acenaphthene	R	10000
78-59-1	Isophorone	R	1000U	51-28-5	2,4-Dinitrophenol	R	5200 U
88-75-5	2-Nitrophenol	R	1000U	100-02-7	4-Nitrophenol	R	5200 U
105-67-9	2,4-Dimethylphenol	R	1000U	132-64-9	Dibenzofuran	R	1000U
65-85-0	Benzoic Acid	R	5200U	121-14-2	2,4-Dinitrotoluene	R	1000U
111-91-1	bis(2-Chloroethoxy)methane	R	1000U	606-20-2	2,6-Dinitrotoluene	R	10000
120-83-2	2,4-Dichlorophenol	R	1000U	84-66-2	Diethylphthalate	R	10000
120-82-1	1,2,4-Trichlorobenzene	R	10000	7005-72-3	4-Chlorophenyl-phenylether	R	10000
91-20-3	Naphthalene	R	1000U	86-73-7	Fluorene	R	1000u

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Ì

ANALYSIS DATA REPORT

Analis ID: 901206-045

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-123

Customer: J. KESSNER/R. SHUCK

File ID: >14474

Sample Matrix: SOIL

Instrument ID: HP-5985

Authorized By: D. C. Canada

Requisition Number:

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg		CAS			ug/Kg
100-01-6	4-Nitroaniline	••••			**********			
		R	5200U		53-70-3		R	1000U
534-52-1	4,6-Dinitro-2-methylphenol	R	5200U		191-24-2	Benzo(g,h,i)perylene	R	1000U
86-30-6	N-Nitrosodiphenylamine	R	1000U					
101-55-3	4-Bromophenyl-phenylether	R	1000U					
118-74-1	Hexach (orobenzene	R	1000U					
87-86-5	Pentachlorophenol	R	5200U					
85-01-8	Phenanthrene	R	1000U					
120-12-7	Anthracene	R	1000U					
84-74-2	Di-n-butylphthalate		3300 %	u				
206-44-0	Fluoranthene	R	10000					
129-00-0	Pyrene	R	1000U					
85-68-7	Butylbenzylphthalate	R	1000U					
91-94-1	3,3'-Dichlorobenzidine	R	2100U					
56-55-3	Benzo(a)anthracene	R	10000					
117-81-7	bis(2-Ethylhexyl)phthalate	R	10000			1		
218-01-9	Chrysene	R	10000			17		
117-84-0	Di-n-octylphthalate	R	1000U			10.		
205-99-2	Benzo(b)fluoranthene	R	1000U			// 4/6/		
207-08-9	Benzo(k)fluoranthene	R	1000U		U	' '991		
50-32-8	Benzo(a)pyrene	R	10000			, , ,		
193-39-5	Indeno(1,2,3-cd)pyrene	R	10000					

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS AWALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS 1D: 901206-045	Customer Sample ID: N-123
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSHER/R. SHUCK
Sample Matrix: SOIL	File ID: <u>>14474</u>
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution factor:1.0	Date Analyzed: 2-JAN-1991
% Moisture: not dec. <u>8.5</u> dec. <u></u>	Date Extracted: <u>13-DEC-1990</u>
Extraction: (Sepf/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	

Concentration Units
Number TICs found: 20 (ug/L or ug/Kg): ug/Kg

CAS NU		COMPOUND NAME	RT	EST. CONC.	Q ********
1. 1	23-42-2	2-Pentanone, 4-hydroxy-4-methy	5.65	14000	-JAB
2.		UNKNOUN	5.72	950	J
3		UNKNOWN ALCOHOL	1 -13.87	1500	- 18 -
4		UNKNOWN	16.90	3100	-48-
5		UNKNOWN	17.28	3700	J8-
6		UNKNOWN	19.70	14000	- 48-
7		UNKNOWN	20.90	6300	J8
8		UNKNOWN HYDROCARBON	23.77	730	- 10 -
9		UNKNOWN PHTHALATE ESTER	24.68	700	↓0 -
10		UNKNOWN AKLOXY COMPOUND	24.83	1200_	J
11		UNKNOWN HYDROCARBON	25.09	990	JB -
12		ANTHRACECDIONE	-26.05	12000	- 18 -
13		UNKNOWN HYDROCARBON	26.35		-1 8-
14		UNKNOWN HYDROCARBON	2 7.55	2400	JB-
15		UNKNOWN HYDROCARBON	2 8.70	3600	 18-
16		UNKNOWN ALKOXY COMPOUND	29.69	1800	- J0-
17		UNKNOWN HYDROCARBON	29.81	2900	J
18		UNKNOWN HYDROCARBON	30.85	2600	- 48
19		UNKNOWN HYDROCARBON	31.79	7000	 -8-
20		UNKNOWN HYDROCARBON	-31.87	2000	1-18-
21		1	1	!	1
22			1	1	1
23			1	1	1
24			1	1	1
25		<u> </u>		1	1 .
26			<u> </u>	i	
27				1	1
28				1	1
29					1
30.				!	1

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

1/6/91

Page 1 of 1

Analis ID: 901206-045

Customer Sample 10: N-123

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07595

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: SL STAFFORD

Associated Blank: 901210-025

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg		CAS		ug/Kg
74-87-3	Chloromethane	110		79-00-5	1,1,2-Trichloroethane	5U
74-83-9	Brómomethane	110		71-43-2	Benzene	5U
75-01-4	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	SU
75-00-3	Chloroethane	110		75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	5 -2-18-	U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	17 1 8-	U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	50		127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 U		79-34-5	1,1,2,2-Tetrachloroethane	5บ
75-34-3	1,1-Dichloroethane	50		108-88-3	Toluene	5U
540-59-0	1,2-Dichloroethene (total)	50		108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U		100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	50		100-42-5	Styrene	5 U
78-93-3	2-Butanone	110		1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	50				
56-23-5	Carbon Tetrachloride	5 U				
108-05-4	Vinyl Acetate	110			1	
75-27-4	Bromodichloromethane	5 U			11	
78-87-5	1,2-Dichloropropane	5 U			11	
10061-01-5	cis-1,3-Dichloropropene	5 U			$\int U \int 1$	
79-01-6	Trichloroethene	5 U			′ 1/6/	
124-48-1	Dibromochloromethane	5 U			1791	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Analis ID: 901206-046

Customer Sample ID: N-124

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14475

Requisition Number:

Instrument ID: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

Sample Matrix: SOIL

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

7.1

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
108-95-2	Phenol	R	10000	106-47-8	4-Chloroaniline	R	10000
111-44-4	bis(2-Chloroethyl)ether	R	10000	87-68-3	Hexachlorobutadiene	R	10000
95-57-8	2-Chlorophenol	R	1000U	59-50-7	4-Chloro-3-methylphenol	R	10000
541-73-1	1,3-Dichlorobenzene	R	1000U	91-57-6	2-Methylnaphthalene	R	10000
106-46-7	1,4-Dichlorobenzene	R	10000	77-47-4	Nexachlorocyclopentadiene	R	1000U
100-51-6	Benzyl Alcohol	R	1000U	88-06-2	2,4,6-Trichlorophenol	R	1000U
95-50-1	1,2-Dichlorobenzene	R	1000U	95-95-4	2,4,5-Trichlorophenol	R	4800U
95-48-7	2-Methylphenol	R	10000	91-58-7	2-Chloronaphthalene	R	10000
108-60-1	bis(2-Chloroisopropyl)ether	R	10000	88-74-4	2-Nitroaniline	R	4800U
106-44-5	4-Methylphenol	R	1000U	131-11-3	Dimethylphthalate	R	1000U
621-64-7	N-Nitroso-di-n-propylamine	R	1000U	208-96-8	Acenaphthylene	R	10000
67-72-1	Hexachloroethane	R	10000	99-09-2	3-Nitroaniline	R	4800U
98-95-3	Nitrobenzene	R	1000U	83-32-9	Acenaphthene	R	10000
78-59-1	Isophorone	R	1000U	51-28-5	2,4-Dinitrophenol	R	4800U
88-75-5	2-Nitrophenol	R	1000U	100-02-7	4-Nitrophenol	R	4800U
105-67-9	2,4-Dimethylphenol	R	10000	132-64-9	Dibenzofuran	R	1000U
65-85-0	Benzoic Acid	R	4800U	121-14-2	2,4-Dinitrotoluene	R	10000
111-91-1	bis(2-Chloroethoxy)methane	R	1000U	606-20-2	2,6-Dinitrotoluene	R	10000
120-83-2	2,4-Dichlorophenol	R	1000U	84-66-2	Diethylphthalate	R	10000
120-82-1	1,2,4-Trichlorobenzene	R	10000	7005-72-3	4-Chlorophenyl-phenylether	R	10000
91-20-3	Naphthalene	R	1000U	86-73-7	Fluorene	R	10000
	•						

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

AnaLIS ID: 901206-046

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-124

Customer: J. KESSNER/R. SHUCK

File ID: >14475

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture: 7.1 Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
100-01-6	4-Nitroaniline	R	4800U	53-70-3	Dibenz(a,h)anthracene		10000
534-52-1	4,6-Dinitro-2-methylphenol	R	4800U	191-24-2	Benzo(g,h,i)perylene	R	1000U
86-30-6	N-Nitrosodiphenylamine	R	1000U				
101-55-3	4-Bromophenyl-phenylether	R	1000U				
118-74-1	Hexachlorobenzene	R	1000U				
87-86-5	Pentachlorophenol	R	4800U				
85-01-8	Phenanthrene	R	1000U				
120-12-7	Anthracene	R	1000U				
84-74-2	Di-n-butylphthalate		3700 B. W.				
206-44-0	Fluoranthene	R	10000				
129-00-0	Pyrene	R	10000				
85-68-7	Butylbenzylphthalate	R	1000U				
91-94-1	3,3'-Dichlorobenzidine	R	2000U				
56-55-3	Benzo(a)anthracene	R	1000U				
117-81-7	bis(2-Ethylhexyl)phthalate	R	1000U				
218-01-9	Chrysene	R	1000U		J		
117-84-0	Di-n-octylphthalate	R	1000U		17		
205-99-2	Benzo(b)fluoranthene	R	1000U	1/			
207-08-9	Benzo(k)fluoranthene	R	1000U	1	4/. /		
50-32-8	Benzo(a)pyrene	R	1000U	U	16/		
193-39-5	Indeno(1,2,3-cd)pyrene	R	1000U		' '/ 4/		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aidol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 9

Oak Ridge K-25 Site Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901206-046	Customer Sample ID: N-124
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: >14475
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 2-JAN-1991
% Moisture: not dec7.1 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) SoxH	pH:
GPC Cleanup: (Y/N) N	

Number TICs found: 20 Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
************	***************************************			2222222
1. 123-42-2	2-Pentanone, 4-hydroxy-4-methy	5.70	18090	-JA8
2	UNKNOWW ALCOHOL	-6.33	660	-18-
3	UNKNOWN ALCOHOL	-13.88	1000	_+8-
4	UNKNOWN	16.91	2600	-10-
5	UNKNOWN	47.20	3600	-10-
6	UNKNOWN	19.70	17000	_
7	UNKHOWN	- 20.89 -	7500	-18-
8	UNKNOWN HYDROCARBON	23.76	650	
9	UNKNOWN PHTHALATE ESTER	-24.67	740	JB-
10	UNKNOWN HYDROCARBON	24.84	1500	J
11	UNKNOWN HYDROCARBON	25.09	889	_ 18-
12	ANTHRACECDIONE	-26.06	11000	-10 -
13	UNKNOWN HYDROCARBON	- 26.35	830	
14	UNKNOWN HYDROCARBON	-27.56	1800	₩8-
15	UNKNOWN HYDROCARBON	-28.71	2700	18.
16	UNKNOWN ALKOXY COMPOUND	27.68	1300-	 JS
17	UNKNOWN HYDROCARBON	29.80	2100	L J
18	UNKNOWN HYDROCARBON	_30_86_	1500	- 18 -
19.	UNKNOWN HYDROCARBON	- 31.80 -	6500	JB -
20	UNKNOWN ALKOXY COMPOUND	37.26	1200	J
21		i		1
22		i	L	
23	1	1	l	1
24	1		1	
25	1		1	1
26	1		ſ	i
27		l	1	1
28		1	1	1
29	1	1	!	
30.	<u> </u>	<u> </u>	<u> </u>	1

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Analis ID: 901206-046 Customer Sample ID: N-124

Laboratory: Organic Mass Spectroscopy Laboratory Customer: J. KESSNER/R. SHUCK

File ID: 07596 Sample Matrix: SOIL

Instrument ID: 5970#2 Requisition Number:

Authorized By: D. C. Canada Date Sample Received: 5-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Date Analyzed: 10-DEC-1990

Preparation Procedure Number: PURGE & TRAP Analysis Procedure Number: VOA (CLP) NDP

Percent Hoisture: 7 Dilution Factor: 1.0

Percent Hoisture (decanted): Analyst: SL STAFFORD

Associated Blank: 901210-025 QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg		CAS		ug/Kg
••••••		•••••			•••••	•••••
74-87-3	Chloromethane	110		79-00-5	1,1,2-Trichloroethane	5U
74-83-9	Bromomethane	110		71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110		10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110		75-25-2	8romoform	5 U
75-09-2	Methylene Chloride	5 շ տ	u	108-10-1	4-Methyl-2-pentanone	1 10
67-64-1	Acetone	25 &	u	591-78-6	2-Hexanone	1 1U
75-15-0	Carbon Disulfide	5 U		127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5 U		79-34-5	1,1,2,2-Tetrachioroethane	5 U
75-34-3	1,1-Dichloroethane	50		108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5 U		108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U		100-41-4	Ethylbenzene	SU
107-06-2	1,2-Dichloroethane	5 U		100-42-5	Styrene	SU
78-93-3	2-Butanone	110		1330-20-7	Xylene (total)	Su
71-55-6	1,1,1-Trichloroethane	50				
56-23-5	Carbon Tetrachloride	5∪				
108-05-4	Vinyl Acetate	110				
75-27-4	Bromodichloromethane	50			. 1	
78-87-5	1,2-Dichloropropane	50			17	
10061-01-5	cis-1,3-Dichloropropene	5 U			\mathcal{H}	
79-01-6	Trichloroethene	50			4/, /	
124-48-1	Dibromochloromethane	5 U		0	16/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Analis ID: 901206-047

Customer Sample ID: N-125

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK Sample Matrix: SOIL

File ID: >14476

Requisition Number:

Instrument 10: HP-5985 Authorized By: D. C. Canada

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 2-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor:

1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[] : Result has been Corrected for Spike

6.5

CAS			ug/Kg	CAS			ug/Kg
		_	4000.	444 47 4		-	
108-95-2		R	1000U	106-47-8	4-Chloroaniline	R	10000
111-44-4	bis(2-Chloroethyl)ether	R	10000	87-68-3	Hexach Lorobutadiene	R	10000
95-57-8	2-Chlorophenol	R	1000U	59-50-7	4-Chloro-3-methylphenol	R	10000
541- <i>7</i> 3-1	1,3-Dichlorobenzene	R	10000	91-57-6	2-Methylnaphthalene	R	10000
106-46-7	1,4-Dichlorobenzene	R	10000	77-47-4	Hexachlorocyclopentadiene	R	10000
100-51-6	Benzyl Alcohol	R	1000U	88-06-2	2,4,6-Trichlorophenol	R	10000
95-50-1	1,2-Dichlorobenzene	R	1000U	95-95-4	2,4,5-Trichlorophenol	R	5100U
95-48-7	2-Methylphenol	R	1000U	91-58-7	2-Chloronaphthalene	R	1000U
108-60-1	bis(2-Chloroisopropyl)ether	R	1000U	88-74-4	2-Nitroaniline	R	5100U
106-44-5	4-Methylphenol	R	1000U	131-11-3	Dimethylphthalate	R	10000
621-64-7	N-Nitroso-di-n-propylamine	R	1000U	208-96-8	Acenaphthylene	R	10000
67-72-1	Hexachloroethane	R	1000U	99-09-2	3-Nitroaniline	R	5100U
98-95-3	Nitrobenzene	R	1000U	83-32-9	Acenaphthene	R	10000
78-59-1	Isophorone	R	1000U	51-28-5	2,4-Dinitrophenol	R	5100U
88-75-5	2-Nitrophenol	R	1000U	100-02-7	4-Nitrophenol	R	5100U
105-67-9	2,4-Dimethylphenol	R	1000U	132-64-9	Dibenzofuran	R	1000U
65-85-0	Benzoic Acid	R	5100U	121-14-2	2,4-Dinitrotoluene	R	10000
111-91-1	bis(2-Chloroethoxy)methane	R	1000U	606-20-2	2,6-Dinitrotoluene	R	10000
120-83-2	2,4-Dichlorophenol	R	10000	84-66-2	Diethylphthalate	R	10000
120-82-1	1,2,4-Trichlorobenzene	R	1000U	7005-72-3	4-Chlorophenyl-phenylether	R	10000
91-20-3	Naphthalene	R	1000U	86-73-7	Fluorene	R	1000U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-047

Customer Sample ID: N-125

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14476

Authorized By: D. C. Canada

Sample Matrix: SOIL Requisition Number:

Instrument ID: HP-5985

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Preparation Procedure Number:

Percent Moisture (decanted):

Date Analyzed: 2-JAN-1991

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Analyst: AK HEADRICK

QA File Number: NA

Associated Blank: 901214-083

[] : Result has been Corrected for Spike

CAS			ug/Kg	CAS			ug/Kg
100-01-6	4-Nitroaniline	 R	5100U	53-70-3	Dibenz(a,h)anthracene	R	10000
534-52-1	4,6-Dinitro-2-methylphenol	R	5100U	191-24-2	<u>-</u>	R	10000
86-30-6	N-Nitrosodiphenylamine	R	1000U			•	1000
101-55-3	4-Bromophenyl-phenylether	R	1000U				
118-74-1	Hexachlorobenzene	R	1000U				
87-86-5	Pentachlorophenol	R	5100U				
85-01-8	Phenanthrene		2200				
120-12-7	Anthracene	R	1000U				
84-74-2	Di-n-butylphthalate		5600 B. U.				
206-44-0	Fluoranthene	R	10000				
129-00-0	Pyrene	R	1000U				
85-68-7	Butylbenzylphthalate	R	10000				
91-94-1	3,3'-Dichlorobenzidine	R	2100U				
56-55-3	Benzo(a)anthracene	R	10000				
117-81-7	bis(2-Ethylhexyl)phthalate	R	1000U		1		
218-01-9	Chrysene	R	1000U	1	1		
117-84-0	Di-n-octylphthalate	R	10000	1	\mathcal{O}_{\cdot}		
205-99-2	Benzo(b) fluoranthene	R	1000U	1	4/, ,		
207-08-9	Benzo(k)fluoranthene	R	1000U		16/		
50-32-8	Benzo(a)pyrene	R	10000	•	191		
193-39-5	Indeno(1,2,3-cd)pyrene	R	1000U				

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. O Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

GPC Cleanup: (Y/N) N

Number TICs found: 20

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
	=======================================	=======================================	**********	=======
1. 123-42-2	2-Pentanone, 4-hydroxy-4-methy	5 .78	43000	-BAB-
2	UNKNOWN HYDROCARBON	14.12	12000	j
3	UNKNOWN HYDROCARBON	16.03	23000	3
4	UNKNOWN HYDROCARBON	17:38 	7800	18-
5	UNKNOWN HYDROCARBON	17.81	22000	J
6	UNKNOWN HYDROCARBON	18.56	8500	J
7	UNKNOWN HYDROCARBON	18.82	12000	J
8	UNKNOWN HYDROCARBON	19.46	28000	J
9	UNKNOWN	19.74	22000	J
10	UNKNOWN HYDROCARBON	20.41	8200	J
11	UNKNOWN	-20.94	15000	- 18-
12	UNKNOWN HYDROCARBON	20.98	17000	J
13	UNKNOWN HYDROCARBON	21.70	25000	j
14	UNKNOWN HYDROCARBON	22.46	42000	J
15	UNKNOWN HYDROCARBON	22.55	23000	J
16	UNKNOWN HYDROCARBON	-23.84	34000	- ⊌8-
17	UNKNOWN HYDROCARBON	23.96	18000	J
18	UNKNOWN HYDROCARBON	-25.15	28000	- 18-
19	UNKNOWN HYDROCARBON	-26:40-	23000	UB -
20.	UNKNOWN HYDROCARBON	-27.58	26000	- 18 -
21			1	
22			l	
23				
24			1)
25	1			
26	[: 	
27	l	<u></u>	<u> </u>	<u> </u>
28	<u> </u>	<u> </u>	!	l
29	l	l	I	<u> </u>
30.	<u> </u>	 	!	L
JU.			L	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Analis ID: 901206-047

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: 07620

Sample Matrix: SOIL Requisition Number:

Instrument ID: 5970#2 Authorized By: D. C. Canada

Date Sample Received: 6-DEC-1990

Customer Sample ID: N-125

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 11-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901211-004

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
7/ 07 7	Chi annuah na	4411	70.00.5	4 4 2 Taichlanachana	F11
74-87-3	*	110		1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	110		Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	110	75-25-2	Bromoform	5บ
75-09-2	Methylene Chloride	5 U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	110	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	SU	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	5U	79-34-5	1,1,2,2-Tetrachloroethane	5บ
75-34-3	1,1-Dichloroethane	5 U	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	Su	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	50
107-06-2	1,2-Dichloroethane	5 U	100-42-5	Styrene	5 U
78-93-3	2-Butanone	110	1330-20-7	Xylene (total)	5 U
71-55-6	1,1,1-Trichloroethane	SU			
56-23-5	Carbon Tetrachloride	5 u			
108-05-4	Vinyl Acetate	110			
75-27-4	Bromodichloromethane	5 U			
78-87-5	1,2-Dichloropropane	5 U			
10061-01-5	cis-1,3-Dichloropropene	5 U			
79-01-6	Trichloroethene	5 U			
124-48-1	Dibromochloromethane	5 U			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-047	Customer Sample ID: N-125
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: <u>07620</u>
Level: (low/med): LOW	Date Received: 6-DEC-1990
Dilution Factor:1.0	Date Analyzed: 11-DEC-1990
% Moisture: not dec7	

Number TICs found: _1

Concentration Units
(ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
**********	************************		=========	=========
176-13-1	Freon 113	5-20	5	
2				
3		<u> </u>		1
4				
5				
6				1
7				
8				
9				
10				<u> </u>
11				
12				
13				
14				
15				
16				
17				
18				<u> </u>
19				
20				
21		!	· · · · · · · · · · · · · · · · · · ·	
22				
23				
24				
25				
26	No.			
27.				<u> </u>
28		<u> </u>		
29.		<u> </u>	1	
30.	**************************************			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Page 1 of 2

Analis ID: 901206-049

Customer Sample ID: N-126

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14511

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: HP-5985

Requisition Number:

Date Sample Received: 6-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 17-JAN-1990

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NOT

Percent Moisture:

Percent Moisture (decanted):

Dilution Factor:

Analyst: AK HEADRICK

8.3

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
	***************************************	•••••	•••••	***************************************	•••••
108-95-2	Phenol	11000丁	106-47-8	4-Chloroaniline	1100U 😙
111-44-4	bis(2-Chloroethyl)ether	11000 🌫	87-68-3	Hexachlorobutadiene	11000 ブ
95-57-8	2-Chlorophenol	11000 丁	59-50-7	4-Chloro-3-methylphenol	11000 ブ
541-73-1	1,3-Dichlorobenzene	110005	91-57-6	2-Methylnaphthalene	1100U J
106-46-7	1,4-Dichlorobenzene	11000 ブ	77-47-4	Hexachlorocyclopentadiene	11000 ブ
100-51-6	Benzyl Alcohol	11000 ブ	88-06-2	2,4,6-Trichlorophenol	11000プ
95-50-1	1,2-Dichlorobenzene	11000 プ	95-95-4	2,4,5-Trichlorophenol	52000 プ
95-48-7	2-Methylphenol	1100UJ	91-58-7	2-Chloronaphthalene	1100U J
108-60-1	bis(2-Chloroisopropyl)ether	1100U J	88-74-4	Z-Nitroaniline	5200U J
106-44-5	4-Methylphenol	11000 🍑	131-11-3	Dimethylphthalate	1100U J
621-64-7	N-Nitroso-di-n-propylamine	1100UJ	208-96-8	Acenaphthylene	11000 ブ
67-72-1	Hexachloroethane	11000 丁	99-09-2	3-Nitroaniline	5200U J
98-95-3	Nitrobenzene	1100U <i>J</i>	83-32-9	Acenaphthene	11000 ブ
78-59-1	Isophorone	11000 ェ	51-28-5	2,4-Dinitrophenol	52000 ゴ
88-75-5	2-Nitrophenol	1100UJ	100-02-7	4-Nitrophenol	52000 ブ
105-67-9	2,4-Dimethylphenol	11000フ	132-64-9	Dibenzofuran	11000 ブ
65-85-0	Benzoic Acid	5200U <i>J</i> T	121-14-2	2,4-Dinitrotoluene	11000 5
111-91-1	bis(2-Chloroethoxy)methane	110005	606-20-2	2,6-Dinitrotoluene	1100U J
120-83-2	2,4-Dichlorophenol	1100U ブ	84-66-2	Diethylphthalate	11000 ゴ
120-82-1	1,2,4-Trichlorobenzene	11000 プ	7005-72-3	4-Chlorophenyl-phenylether	11000 ブ
91-20-3	Naphthalene	11000 ゴ	86-73-7	Fluorene	11000 ア

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0

Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901206-049

Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL

Level: (low/med): LOW

Dilution Factor: 1.0

% Moisture: not dec. ____8.3 dec.

Extraction: (SepF/Cont/Sonc) SoxH

GPC Cleanup: (Y/N) N

Number TICs found: 20

Customer Sample ID: N-126

Customer: J. KESSNER/R. SHUCK

File ID: >14511_

Date Received: 6-DEC-1990
Date Analyzed: 17-JAN-1990
Date Extracted: 13-DEC-1990

pH: _____

Concentration Units

(ug/L or ug/Kg): ug/Kg

	IUMBER	COMPOUND NAME	RT	EST. CONC.	,
******	*******	=======================================		***********	*******
1	123-42-2	2-Pentanone, 4-hydroxy-4-methy	5.78	14000	JAB-
2		UNKNOWN HYDROCARBON	14.13	7800	J
3		UNKNOWN HYDROCARBON	16.02	13000	J
4	·	UNKNOWN HYDROCARBON	16.92	- 4300	- 38-
5		UNKNOWN HYDROCARBON	17.78	13000	_1
6		UNKNOWN	18.54	4100	J
7		UNKNOWN HYDROCARBON	18.79	5800	J
8		UNKNOWN HYDROCARBON	19.41	16000	J
9		UNKNOWN	<u> 19:70-</u>	7000	- 78 -
10		UNKNOWN HYDROCARBON	20.38	4200	J
11		UNKNOWN HYDROCARBON	20.97	15000	J
12		UNKNOWN HYDROCARBON	21.67	8400	J
13		UNKNOWN HYDROCARBON	22.43	16000	J
14		UNKNOWN HYDROCARBON	22.52	8400	J
15		UNKNOWN HYDROCARBON	-23:01	13000	- 80 -
16		UNKNOWN HYDROCARBON	23.93	7300	J
17		UNKNOWN HYDROCARBON	25.13	10000	- 48-
18		UNKNOWN ARAMATIC KETONE	26.07	9300	 10
19		UNKNOWN HYDROCARBON	-26.38	8300	 18
20		UNKNOWN HYDROCARBON	27.57	11000	- 18 -
21				L	
				i	1
		<u> </u>	_1	1	<u></u>
24				l	L
		1		l	<u> </u>
		<u> </u>	1	<u> </u>	<u></u>
		<u> </u>		<u> </u>	<u></u>
28			1	L	1
		l		L	
30.		1	1	1	<u> </u>

- ${\tt U}\,$ Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0

ANALYSIS DATA REPORT

Page 1 of 1

Analis ID: 901206-049

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-126

Customer: J. KESSNER/R. SHUCK

File ID: 07637

Authorized By: D. C. Canada

Requisition Number:

Instrument ID: 5970#2

Date Sample Received: 6-DEC-1990

Sample Matrix: SOIL

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 12-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture:

Dilution Factor:

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901212-004

QA File Number: NA

[] : Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
•••••	***************************************	•••••	•••••	***************************************	•••••
74-87-3	Chloromethane	110	79-00-5	1,1,2-Trichloroethane	Su
74-83-9	8romomethane	110	71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	110	10061-02-6	trans-1,3-Dichloropropene	Su
75-00-3	Chloroethane	110	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	10 & U	108-10-1	4-Methyl-2-pentanone	110
67-64-1	Acetone	54 % U	591-78-6	2-Hexanone	110
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachloroethene	5u
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	SU
75-34-3	1,1-Dichloroethane	5 U	108-88-3		5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	Su
67-66-3	Chloroform	5 U	100-41-4	Ethylbenzene	Su
107-06-2	1,2-Dichloroethane	5 U	100-42-5		5u
78-93-3	2-Butanone	110		Xylene (total)	Su
71-55-6	1,1,1-Trichloroethane	5U		•	
	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	110		,	
75-27-4	Bromodichloromethane	5 U		11	
78-87-5	1,2-Dichloropropane	5U		11 8	
10061-01-5	cis-1,3-Dichloropropene	SU		101	
79-01-6	Trichloroethene	5 U		(1 1/6/	
124-48-1	Dibromochloromethane	5 U	l	/ /9/91	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Analis ID: 901206-050

Customer Sample ID: N-127

Date Sample Received: 5-DEC-1990

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: J. KESSNER/R. SHUCK

File ID: >14481 Sample Matrix: SOIL

Instrument ID: MP-5985 Requisition Number: Authorized By: D. C. Canada

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Date Analyzed: 3-JAN-1991

Preparation Procedure Number:

Analysis Procedure Number: BNA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: AK HEADRICK

Associated Blank: 901214-083

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
***********			••••••		••••
108-95-2		7 U096		4-Chloroaniline	9600 ブ
111-44-4	bis(2-Chloroethyl)ether	9600ブ	87-68-3	Hexach lorobutadiene	9600 ブ
95-57-8	2-Chlorophenol	9600 ブ	59-50-7	4-Chloro-3-methylphenol	9600ブ
541-73-1	1,3-Dichlorobenzene	9600ゴ	91-57-6	2-Methylnaphthalene	9600 ブ
106-46-7	1,4-Dichlorobenzene	960U J	77-47-4	Hexachlorocyclopentadiene	960UJ
100-51-6	Benzyl Alcohol	9600 ブ	88-06-2	2,4,6-Trichlorophenol	9600 丁
95-50-1	1,2-Dichlorobenzene	9600 ブ	95-95-4	2,4,5-Trichlorophenol	4800U J
95-48-7	2-Methylphenol	9600 丁	91-58-7	2-Chloronaphthalene	9600 エ
108-60-1	bis(2-Chloroisopropyl)ether	960U J	88-74-4	2-Witroaniline	4800U J
106-44-5	4-Methylphenol	9600 ブ	131-11-3	Dimethylphthalate	960U J
621-64-7	N-Nitroso-di-n-propylamine	9600 ブ	208-96-8	Acenaphthylene	9600 ナ
67-72-1	Hexachloroethane	9600 丁	99-09-2	3-Witroaniline	48000プ
98-95-3	Nitrobenzene	9600 ブ	83-32-9	Acenaphthene	9600 ブ
78-59-1	Isophorone	960U J	51-28-5	2,4-Dinitrophenol	48000 プ
88-75-5	2-Nitrophenol	9600 ブ	100-02-7	4-Nitrophenol	48000 ブ
105-67-9	2,4-Dimethylphenol	9600 ブ	132-64-9	Dibenzofuran	9600 ゴ
65-85-0	Benzoic Acid	4800U J	121-14-2	2,4-Dinitrotoluene	9600 ブ
111-91-1	bis(2-Chloroethoxy)methane	960U J	606-20-2	2,6-Dinitrotoluene	9600 プ
120-83-2	2,4-Dichlorophenol	9600 ゴ	84-66-2	Diethylphthalate	960U J
120-82-1	1,2,4-Trichlorobenzene	9600 ブ	7005-72-3	4-Chiorophenyl-phenylether	9600 ブ
91-20-3	Naphthalene	9600 ブ	86-73-7	Fluorene	960U J

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- 8 Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Page 2 of 2

Analis ID: 901206-050

Laboratory: Organic Mass Spectroscopy Laboratory

File ID: >14481

Instrument ID: HP-5985

Authorized By: D. C. Canada

Customer Sample ID: N-127

Customer: J. KESSNER/R. SHUCK

Sample Matrix: SOIL

Requisition Number:

Date Sample Received: 5-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 13-DEC-1990

Preparation Procedure Number:

Percent Moisture:

Percent Moisture (decanted):

Associated Blank: 901214-083

[] : Result has been Corrected for Spike

Date Analyzed: 3-JAN-1991

Analysis Procedure Number: BNA (CLP) NDP

Dilution Factor: 1.0

Analyst: AK HEADRICK

QA File Number: NA

		•			
CAS	••••	ug/Kg	CAS		ug/Kg
100-01-6	4-Nitroaniline	48000プ	53-70-3	Dibenz(a,h)anthracene	9600 3
534-52-1	4,6-Dinitro-2-methylphenol	4800U _	191-24-2	Benzo(g,h,i)perylene	760U J
86-30-6	N-Nitrosodiphenylamine	960U J	•		
101-55-3	4-Bromophenyl-phenylether	960UJ			
118-74-1	Hexach l orobenzene	9600ブ			
87-86-5	Pentachlorophenol	48000 ブ			
85-01-8	Phenanthrene	960Uプ			
120-12-7	Anthracene	9600 ブ			
84-74-2	Di-n-butylphthalate	2500 鬼 以丁			
206-44-0	Fluoranthene	960U J			
129-00-0	Pyrene	9600 ブ			
85-68-7	Butylbenzylphthalate	9600 ブ			
91-94-1	3,3'-Dichlorobenzidine	20000 ア			
56-55-3	Benzo(a)anthracene	960U J			
117-81-7	bis(2-Ethylhexyl)phthalate	960U J			•
218-01-9	Chrysene	9600 エ		4	
117-84-0	Di-n-octylphthalate	9600 プ	_		
205-99-2	Benzo(b)fluoranthene	9600 ゴ	Λ	1	
207-08-9	Benzo(k)fluoranthene	9600プ	1/9	Vul. 1	
50-32-8	Benzo(a)pyrene	7.000g		1/6/2	
		-	//	· / G	

Data Reporting Qualifiers:

9600 ブ

193-39-5 Indeno(1,2,3-cd)pyrene

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department

BNA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analls ID: 901206-050	Customer Sample ID: N-127
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: J. KESSNER/R. SHUCK
Sample Matrix: SOIL	File ID: >14481
Level: (low/med): LOW	Date Received: 5-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 3-JAN-1991
% Moisture: not dec1 dec	Date Extracted: 13-DEC-1990
Extraction: (SepF/Cont/Sonc) <u>SoxH</u>	pH:
GPC Cleanup: (Y/N) N	
Extraction: (SepF/Cont/Sonc) SoxH	

Number TICs found: 20

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		**********	=======================================	*******
1. 123-42-2	2-Pentanone, 4-hydroxy-4-methy	5 .72	21000	-JAB-
2	UNKNOWN ALCOHOL	13.87	570	- 10 -
3	UNKNOWN	1 6,98	2300	- 10 -
4	UNKNOWN	-17.27	2900	₩-
5	UNKNOWN	19.68	13000	<u></u>
6	UNKNOWN	20.88	2800	J8-
7	UNKNOWN HYDROCARBON	- 25.75	640	- 38 -
8	UNKNOWN HYDROCARBON	23.88	390	J
9	UNKNOWN PHTHALATE ESTER	24.68	670	18 -
10	UNKNOWN	24.86	550	J
11	UNKNOWN_HYDROCARBON	25.08	660	- 18-
12	UNKNOWN AROMATIC KETONE	26.02	7200	 18-
13	UNKNOWN HYDROCARBON	76.34	570	 J8-
14	UNKNOWN HYDROCARBON	27.55	1500	18
15	UNKNOWN HYDROCARBON	28.70	1900	₩-
16	UNKNOWN	29.70	880	J
17	UNKNOWN HYDROCARBON	-29.79	1700	- 18 -
18	UNKNOWN HYDROCARBON	-30.85	1600	-18-
19	UNKNOWN ALKOXY COMPOUND	- 31.80 -	4400	- ↓8 -
20	UNKNOWN PHTHALATE ESTER	32.36	1400	J
21				
22				
23				
24				
25				
26				
27				
28				
29				
30.				

Data Reporting Qualifiers:

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

14/6/91

Analis ID: 901206-050

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: N-127

Customer: J. KESSNER/R. SHUCK

File ID: 07638

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 5970#2

Requisition Number:

Date Sample Received: 6-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 12-DEC-1990

Preparation Procedure Number: PURGE & TRAP

Analysis Procedure Number: VOA (CLP) NDP

Percent Moisture: 0 Dilution Factor:

Percent Moisture (decanted):

Analyst: GL HUDDLESTON

Associated Blank: 901212-004

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
	***************************************	•••••	*********	***************************************	•••••
74-87-3	Chloromethane	100	79-00-5	1,1,2-Trichloroethane	5 U
74-83-9	Bromomethane	100	71-43-2	Benzene	5 U
75-01-4	Vinyl Chloride	10U	10061-02-6	trans-1,3-Dichloropropene	5 U
75-00-3	Chloroethane	10u	75-25-2	Bromoform	5 U
75-09-2	Methylene Chloride	9 · 8. U	108-10-1	4-Methyl-2-pentanone	100
67-64-1	Acetone	71 % U	591-78-6	2-Hexanone	100
75-15-0	Carbon Disulfide	5 U	127-18-4	Tetrachioroethene	Su
75-35-4	1,1-Dichloroethene	5 U	79-34-5	1,1,2,2-Tetrachloroethane	5 U
75-34-3	1,1-Dichloroethane	50	108-88-3	Toluene	5 U
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobenzene	5 U
67-66-3	Chloroform	50	100-41-4	Ethylbenzene	5 U
107-06-2	1,2-Dichloroethane	50	100-42-5	Styrene	5 U
78-93-3	2-Butanone	100	1330-20-7	Xylene (total)	5 u
71-55-6	1,1,1-Trichloroethane	SU			
56-23-5	Carbon Tetrachloride	50			
108-05-4	Vinyl Acetate	10 U			
75-27-4	Bromodichloromethane	SU		,	
78-87-5	1,2-Dichloropropane	SU		, 1	
10061-01-5	cis-1,3-Dichloropropene	ริบ	1,	\nearrow	
79-01-6	Trichtoroethene	5 U		4/,	
124-48-1	Dibromochloromethane	Su		16/91	

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

182 CAISSONS
Sample Date April 5, 1991

MARTIN MARIETTA ENERGY SYSTEMS, INC.

POST OFFICE BOX 2003 OAK RIDGE, TENNESSEE 37831.7440 July 16, 1991

Ms. Joan Kessner Westinghouse Hanford Company Office of Sample Management 2355 Stevens Drive Richland, Washington, 99352

Dear Ms. Kessner:

Analytical Results Package on Project 90-027: Underground Storage Tanks Samples

Attached are the analytical results on five (5) Underground Storage Tanks soil samples, Project 90-028, received into the K-25 Site Analytical Chemistry Department (ACD) laboratories on March 9, 1991. Also attached are copies of the Chain of Custody records for the samples, and a sample identification table. As previously requested in the letter dated December 20, 1990, the results are reported in ACD's AnaLis report format. All data quality objectives were satisfied on this project.

Total Petroleum Hydrocarbons

The total petroleum hydrocarbons analysis was performed by ACD's TP-184203 method, an extraction method for determination of total petroleum hydrocarbons in solids. TP-184203 is a modification of EPA 418.1.

Ms. Joan Kessner

2

July 16, 1991

I certify that this data package is in compliance with the terms and conditions of the OSM's revised Statement of Work and letter dated December 20, 1990, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Sincerely,

Deborah L. Amburgey Program Manager

Hanford Support Program

Deborah Lanburguy

Fred M. Faulcon Program Manager

Waste Management Analysis

Clarence R. Kirkpatrick
Acting Department Manager

K-25 Site Analytical Chemistry Department

Attachments

cc/attach: D.L.Amburgey

S.R.Smith - RC

cc: N.P.Buddin

H.H.Sullivan

Oak Ridge K-25 Site Analytical Chemistry Department Results of Analyses

Date Printed: 15-JUL-1991 12:43

Analis ID: 910311-006

Project: G132 027S Customer Sample ID: MK-101

Customer: KESSNER/ROOS Date Sampled: 5-MAR-1991

Requisition Number:

Sampled By:

Date Sample Received: 9-MAR-1991

Date Sample Completed: 7-APR-1991

Material Description: SOIL

🛘 : Result has been Corrected for Spike

A-45.4					QA.	Date
Activ. Number Procedure No.	Analysis	Result	Units			Completed
		•••••			•••••	
70CAR1-07 70CAR1	Petroleum Hydrocarbons	2.366	x	JC OSBORNE	91-4	6-APR-1991

Oak Ridge K-25 Site Analytical Chemistry Department Results of Analyses

Date Printed: 15-JUL-1991 12:43

Analis ID: 910311-007

Project: G132 027S

Customer Sample ID: MK-102

Customer: KESSNER/ROOS

Requisition Number:

Date Sampled: 5-MAR-1991

Sampled By:

Date Sample Received: 9-MAR-1991

Date Sample Completed: 7-APR-1991

Material Description: SOIL

[] : Result has been Corrected for Spike

Activ. Number Procedure No.	·	Result	Units	Analyst		Date Completed
184203 TP-184203	Petroleum Hydrocarbons	2.948	×	JC OSBORNE	91-4	6-APR-1991

Oak Ridge K-25 Site Analytical Chemistry Department Results of Analyses

Date Printed: 15-JUL-1991 12:43

AnaLIS ID: 910311-008 Customer: KESSNER/ROOS

Project: G132 027S

Customer Sample ID: MK-103

Requisition Number:

Date Sample Received: 9-MAR-1991

Sampled By:

Date Sampled: 5-MAR-1991

Material Description: SOIL

Date Sample Completed: 7-APR-1991

[] : Result has been Corrected for Spike

Activ. Number Procedure No.	Analysis	Result	Units	Analyst	QA File Number	Date Completed
184203 TP-184203	Petroleum Hydrocarbons	0.057	*	JC OSBORNE	91-4	6-APR-1991

13

Oak Ridge K-25 Site Analytical Chemistry Department Results of Analyses

Date Printed: 15-JUL-1991 12:43

AnaLIS ID: 910311-009

Sampled By:

Material Description: SOIL

Date Sampled: 5-MAR-1991

Customer: KESSNER/ROOS

Project: G132 027S

Customer Sample ID: MK-104

Requisition Number:

Date Sample Received: 9-MAR-1991

Date Sample Completed: 7-APR-1991

[] : Result has been Corrected for Spike

Activ. Number Procedure No.		Result	•	Analyst		Date Completed
184203 TP-184203	Petroleum Hydrocarbons	<0.001	x	JC OSBORNE	91-4	6-APR-1991

Oak Ridge K-25 Site Analytical Chemistry Department Results of Analyses

Date Printed: 15-JUL-1991 12:44

Analis ID: 910311-010

Project: G132 027S

Customer Sample ID: MK-105

Requisition Number:

Customer: KESSNER/ROOS Date Sampled: 5-MAR-1991

Date Sample Received: 9-MAR-1991

Sampled By:

Date Sample Completed: 7-APR-1991

Material Description: SOIL

[] : Result has been Corrected for Spike

Activ. Number Procedure No.		Result	Units	Analyst	QA File Number	Date Completed
184203 TP-184203	Petroleum Hydrocarbons	12.592	*	JC OSBORNE	91-4	6-APR-1991

182 CAISSONS Sample Date April 26, 1992 CASE NARRATIVE

LABORATORY: TMA/ARLI

CASE: 03-090

CONTRACT ID: WESTINGHOUSE HANFORD COMPANY

SDG RECEIPT DATE: March 30, 1992

1.0 DESCRIPTION OF CASE:

Three soil samples were analyzed for Total Petroleum Hydrocarbons and Purgeable Aromatics. Preliminary results were provided by FAX within 10 days of VTSR. This package represents the final results.

2.0 SAMPLE LIST:

WESTINGHOUS	SE ID LAB ID	<u>MATRIX</u>	METHOD
B01GM0	A2-03-090-01	SOIL	HC, THE, THP, BX
B01GM1	A2-03-090-02	SOIL	HC, THE, THP. BX
B01GM3	A2-03-090-03	SOIL	HC, THE, THP, BX

Method Codes: HC = EPA 418.1, THE = EPA 8015 EXTRACTABLE, THP = EPA 8015M PURGEABLE, BX = EPA 8020 BTEX

3.0 COMMENTS ON SAMPLE RECEIPT:

The samples were received intact and properly documented.

4.0 COMMENTS ON ANALYSIS:

4.1 EPA 418.1 - TOTAL PETROLEUM BY IR:

All samples were extracted and analyzed within method holding time.

All QC results were acceptable.

4.2 EPA 8015M - EXTRACTABLE HYDROCARBON:

All samples were extracted and analyzed within method holding time.

All QC results were acceptable. There were no problems encountered during analysis. Solvent peaks were eliminated using electronic subtraction. Both the raw and subtracted chromatograms have been included in the package.

4.3 EPA 8015M - PURGEABLE HYDROCARBONS:

All samples were analyzed within method holding time.

All QC results were acceptable. There were no problems encountered during analysis.

4.4 EPA 8020 - BTEX:

All samples were analyzed one day past the method holding time but within 10 days of VTSR.

All QC results were acceptable. There were no problems.

All positive hits were confirmed by GCMS.

5.0 DATA PACKAGE COMMENTS:

The Format of the data deliverable was designed to meet or exceed the requirements of the Westinghouse Hanford Company Statement of Work. The intent of the package design is to provide sufficient data for "stand alone" validation. While the format of the package is "CLP like" Thermo Analytical Inc. makes no claim that this package duplicates in part or in total an EPA CLP data package.

" I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Nicole Roth CLP Manager Dennis D. Wells Technical Director

600000

THA Inc.

REPORT

Work Order # A2-83-898

Results by Sample Received: 63/30/92 SAMPLE # 01 FRACTIONS: D.E. SAMPLE ID BOTGHO Date & Time Collected 03/26/92 418_15____18.2 mg/Kg SAMPLE # 02 FRACTIONS: E SAMPLE ID BOIGMI Date & Time Collected 03/26/92 Category | 418_15<u>149.</u> mg/Kg SAMPLE # 03 FRACTIONS: A.B.C SAMPLE ID BOIGMS Date & Time Collected 03/26/92 Category __ 418_15____59.4 mg/Kg SAMPLE 10 BOIGHS Buplicate SAMPLE # 03 FRACTIONS: D Date & Time Collected 03/26/92 Category ___ 418_15___47.8 mg/Kg SAMPLE # 03 FRACTIONS: E SAMPLE 10 BOIGHS Blank Spike Date & Time Collected #3/26/92 Category . | 418_1S<u>115</u> % Recovery

THA Inc.

REPORT

Work Order # A2-83-090

Received: 03/30/92

SAMPLE ID BOIGHO

Results by Sample

FRACTION 91A TEST CODE 8015HV NAME Volatile Fuels-TPH
Date & Time Collected 93/26/92 Category

MODIFIED 8015 - VOLATILE FUEL NYDROCARBONS

Natrix: Soil

Date Analyzed: 04/08/92 Dilution factor: 5.00

Concentration Units: ___ug/Kg

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	ND	25.0

ND - Not detected at the specified limits

Form 1

Vork Order # A2-03-090

THA Inc.

REPORT

Received: 03/30/92

SAMPLE ID BOIGHO

Results by Sample

FRACTION O1A TEST CODE BTEX NAME BTEX by EPA 8020 Date & Time Collected 03/26/92 Category ____

STEX by EPA Nethod 8020

Matrix: Soil

Date Analyzed: 04/10/92__ Dilution factor: 5,00 Concentration Units: ug/Kg

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	ND	2.5
108-88-3	Toluene	ND	2.5
100-41-4	Ethylbenzene	MD	2.5
1330-20-7	Xylenes (Total)	ND	2.5

% Recovery Surrogate Compound

Bromofluorobenzene ____94

ND - Not detected at the specified limits

form I

THA Inc.

REPORT

Work Order # A2-03-090

Received: 03/30/92

SAMPLE ID BOIGNO

Results by Sample

FRACTION DID TEST CODE 8015MS NAME EXTRACTABLE FUELS - TPM Date & Time Collected 03/26/92 Category ____

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARBONS

Matrix: Soil Date Analyzed: 04/08/92

Dilution factor: _____1.00 Concentration Units: ____mq/Kq

Compound	Sample Result	PQL
Kerosene Range	MD	5.0
C10 - C16 Jet Fuel Range	ND	5.0
C9 - C22 Diesel Range	MD	10.0
Hydraulic Range	MD	5.0

ND = Not detected at the specified limits

form I

THA Inc.

REPORT

Work Order # A2-63-090

Received: 03/30/92

Results by Sample

SAMPLE ID BOICH1 FRACTION 92A TEST CODE 8015MV NAME Volatile Fuels-TPH
Date 4 Time Collected 93/26/92 Category

MODIFIED 8015 - VOLATILE FUEL NYDROCARSONS

Matrix: Soil

Date Analyzed: 04/08/92
Dilution factor: 5.00
Concentration Units: ug/Kg

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	MD	25.0

NO = Not detected at the specified limits

form 1

THA Inc.

REPORT

Werk Order # A2-03-090

Received: 03/30/92

Results by Sample

SAMPLE 10 BOIGHT

FRACTION 02A TEST CODE BYEK HAME BYEK by EPA 8020 Date & Time Collected 93/26/92 Category ____

STEX by EPA Nothod 8020

Matrix: Soil

Date Analyzed: 04/10/92

Dilution factor: 5.00

Concentration Units: ___ug/Kg

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	MD	2.5
108-88-3	Totuene	21	2.5
100-41-4	Ethylbenzene	ND	2.5
1330-20-7	Xylenes (Total)	ND	2.5

% Recovery Surrogate Compound

Bromofluorobenzene ____88

ND = Not detected at the specified limits

form I

THA Inc.

REPORT

Werk Order # A2-03-090

Received: 03/30/92

Results by Sample

SAMPLE 10 BOIGHT

FRACTION 02B TEST CODE 8015MS NAME EXTRACTABLE FUELS - TPU

Date & Time Collected 03/26/92 Category _____

MODIFIED 8015 - EXTRACTABLE FUEL NYDROCARBONS

Natrix: Soil
Date Analyzed: 04/08/92

Dilution factor: _____1.00
Concentration Units: _____89/Kg

Compound	Sample Result	PQL
Kerosene Range	MD	5.0
C10 - C16 Jet Fuel Range	ND	5.0
C9 - C22 Diesel Range	63.0	10.0
Nydraulic Range	ND	5.0

ND = Not detected at the specified limits

form 1

THA Inc.

REPORT

Work Order # A2-03-090

Received: 03/30/92

Results by Sample

SAMPLE 1D BOIGNS FRACTION ON TEST CODE BYEN NAME BYEN BY EPA 8020

Date & Time Collected 03/26/92 Category ______

STEX by EPA Nethod 8020

CAS No.	Compound	Sample Result	PQL
71-43-2	Senzene	ND	2.5
108-88-3	Taluene	16	2.5
100-41-4	Ethylbenzene	MD	2.5
1330-20-7	Xylenes (Total)	ND	2.5

X Recovery Surrogate Compound

MD = Not detected at the specified limits

form 1

100

teceived: 03/30/92

THA Inc.

REPORT

Work Order # A2-03-090

Results by Sample

SAMPLE ID BOIGHS

FRACTION <u>03A</u> TEST CODE <u>8015MY</u> NAME <u>Volatile Fuels-TPN</u>

Date & Time Collected <u>03/26/92</u> Category ______

MODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	ND	25.0

ND = Not detected at the specified limits

Form 1

000056

THA Inc.

REPORT

Work Order # A2-83-090

Received: 03/30/92

Results by Sample

SAMPLE ID BOIGNS FRACTION 038

FRACTION 03B TEST CODE 8015MS NAME EXTRACTABLE FUELS - TPM

Date & Time Collected 03/26/92 Category ______

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARBONS

Natrix: Soil

Date Analyzed: 04/08/92

Dilution factor: 1.00

Concentration Units: ____mg/Kg

Compound	Sample Result	PQL
Kerosene Range	ND	5.0
C10 - C16 Jet Fuel Range	ND	5.0
C9 - C22 Diesel Range	21.3	10.0
Hydraulic Range	ND	5.0

ND = Not detected at the specified limits

form 1

ROY F. WESTON, INC. Lionville Laboratory

CLIENT: WESTINGHOUSE HANFORD

SAMPLES RECEIVED: 03-28-92

RFW #: 9203L841, GC VOLATILE

W.O. #: 6168-02-01

NARRATIVE

One (1) soil sample was collected on 03-26-92.

The sample and its associated QC samples were analyzed according to criteria set forth in Method 602 for Selected Aromatic Organic Volatile target compounds on 04-03,06-92.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. All surrogate recoveries were within laboratory control limits.
- 2. One (1) of eight (8) blank spike recoveries was outside method control limits. There was no impact on this case because analytes were not detected in the sample.

Jack R. Tuschall, Ph.D.

Laboratory Manager

Lionville Analytical Laboratory

4/10/92 Date Roy F. Weston, Inc. - Lionville Laboratory Burgeable Aromatics by GC. Method 602

	Cust ID:	B01GM2	!	B01GM	2	B01GM2	2	BLK		BLK BS		BLK	
Sample Information	RFW#: Matrix: D.F.: Units:	001 SOIL 1.0 UG/R	0	001 M SOIL 1.0 UG/1	00	001 MSI SOIL 1.0 UG/F	00	92LV5055-MB1 SOIL 1.00 UG/KG	921	LV5055-P SOIL 1.0 UG/P	00	92LV5056-1 SOIL 1.0 UG/I	00
aaa-Tr	ifluorotoluene	69	•	81	•	73	•	87	,	93	%	72	*
表 2 次 2 宋 2 宋 2 宋 2 2 3 2 3 2 3 2 2 3 3 3 3 3		**************************************			==fl= %	70	==fl	.=====================================		******** 81	<i>\$</i>	1.0	
		0.94		75 65		57		1.0		77	•		
thylbenzene				68		63	i	1.0		75 \$	- 8	1.0	U
Toluene		1.9		65		57	·	2.0 t				270	U
Kylene (total)					-						3		
	Cust ID:	BLK BS								1			
Sample	RFW#:	92LV5056-1	(Bl			•				3		.0057	
Information	Matrix:	SOIL									٠		
	D.F.:	1.0		•	•					ţ			
	Units:	UG/I	(G										
aaa-Tr	ifluorotoluene	97	•								-=fl=		==f]
	. B. R. U. B. R. R. R. R. R. R. R. R. R. R. R. R. R.	83	<i>.</i> =IT=		IT-		11			ļį			
Benzene Ethylbenzene		•	i							1	93 • • •	.	
		- 78	•)j			
Xylene (total)		80	•					,		11	V". •		

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Roy F. Weston, Inc. - Lionville Laboratory Nonhalogenated Volatiles by GC, Method 8015

RFW Batch Number:	9203L841	Client: WEST	Inghouse Hanfo	RD Wos	rk Order: 6168-	02-01-0000	Page: 1
	Cust ID:	B01GM2	B01GM2	B01GM2	BLK	BLK BS	
Sample	RFW# :	001	001 MS	001 MSD	92LV6019-MB1	92LV6019-MB1	
Information	Matrix:	SOIL	SOIL	SOIL	BOIL	SOIL	
	D.F. :	1.00	1.00	1.00	1.00	1.00	
	Units:	UG/KG	UG/KG	UG/KG	UG/KG	UG/RG	
***********		fl=		······································	======f1	=======f] =======f
Gasoline		91 U	47 \$	56	100 U	100	

0

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

GC VOLATILES SHEET WHC-SD-EN-TI-136, Rev 0 * B01GM2 Lab Name: Roy F. Weston, Inc. Work Order: 6168-02-01-0000 Client: WESTINGHOUSE HANFORD SOIL Lab Sample ID: 9203L841-001 Sample wt/vol: 5.66 (g/mL) G Lab File ID: D3242591 Level: (low/med) LOW Date Received: 03/28/92 % Moisture: not dec. ___3 Date Analyzed: 04/03/92

CONCENTRATION UNITS:

Dilution Factor: 1.00

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 01-000-000-----Gasoline 91 U.

Matrix:

Column: (pack/cap) PACK

12/88 Rev.

Roy F. Weston, Inc. - Lionville Laboratory

RFW Batch Number: 9203L	.841	Pet	roleum Hydroca NGHOUSE HANFOR	rbons by IR	k Order: 6168-		04/02/92 15:40 Page: 1
	Cust ID:	BO1GM2	BO1GM2	BO1GM2	PBLK	PBLK BS	
Sample Information	RFW#: Matrix: D.F.: Units:	001 SOIL 1.00 mg/Kg	001 MS SOIL 1.00 mg/Kg	001 MSD SOIL 1.00 mg/Kg	92DHCO74-MB1 SOIL 1.00 mg/Kg	92DHCO74-MB1 SOIL 1.00 mg/Kg	
Petroleum Hydrocarbon_	8828882288	110	87 %	102 %	4.0 U	91 %	*********

WHC-SD-EN-TI-136, Rev.

0

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

0000015 CLIENT SAMPLE NO.

PESTICIDE ORGANICS ANALYSIS SHEET

WHC-SD-EN-TI-136, Rev. 0

B01GM2 Lab Name: Roy F. Weston, Inc. Work Order: 6168-02-01-0000

Client: <u>WESTINGHOUSE HANFORD</u>

Matrix: SOIL Lab Sample ID: 9203L841-001

Sample wt/vol: 25.0 (g/mL) G Lab File ID: 04029227.14

Level: (low/med) LOW Date Received: 03/28/92

* Moisture: not dec. ___3 dec. Date Extracted: 04/01/92

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/03/92

Dilution Factor: 0.0500 1.0 GPC Cleanup: (Y/N) N pH: 7.4

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ma/ka

000-00-0-----Diesel fuel 14

FORM 1 PEST

12/88 Rev.

Roy F. Weston, Inc. - Lionville Laboratory

RFW Batch Number:	9203L841	Client: WEST	gc scan Inghouse Hanford	Work	Order: 6168-	•	04/07/92 10:23 Page: 1
	Cust ID:	BO1GM2	B01GM2	B01GM2	B01GM2	BLK	BLK BS
Sample Information	RFW#: Matrix: D.F.: Units:	001 SOIL 1.00 mg/kg	001 DL 80IL 5.00 mg/kg	001 MS SOIL 5.00 mg/kg	001 MSD SOIL 5.00 mg/kg	92LE0501-MB1 80IL 1.00 mg/kg	92LR0501-MB1 SOIL 1.00 mg/kg
	p-Terphenyl	103	87	87 \$	105	107	84 \$
Diesel fuel		14	16	94 %	96	4.0 U	79 %

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

GC VOLATILES SHEET

100-41-4----Ethylbenzene

108-88-3----Toluene 1330-20-7-----Xylene (total)

CLIENT SAMPLE NO.

B01GM2 Lab Name: Roy F. Weston, Inc. Work Order: 6168-02-01-0000 Client: WESTINGHOUSE HANFORD Matrix: SOIL Lab Sample ID: 9203L841-001 Sample wt/vol: 5.50 (g/mL) G Lab File ID: D3242476 (low/med) LOW Level: Date Received: 03/28/92 * Moisture: not dec. ____3 Date Analyzed: 04/03/92 Column: (pack/cap) PACK Dilution Factor: 1.00 CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND 71-43-2----Benzene

12/88 Rev.

0.94

0.94

0.94

1.9

U

ט

ט

U

1

105-N-LFT April 30, 1992 CASE NARRATIVE

LABORATORY: TMA/ARLI

CASE: 04-016

CONTRACT ID: WESTINGHOUSE HANFORD COMPANY

SDG RECEIPT DATE: APRIL 3, 1992

1.0 DESCRIPTION OF CASE:

Five soil samples were analyzed for Total Petroleum Hydrocarbons and Purgeable Aromatics. Preliminary results were provided by FAX within 10 days of VTSR. This package represents the final results.

2.0 SAMPLE LIST:

WESTINGHOUS	SE ID LAB ID	<u>MATRIX</u>	METHOD
BO1GM4	A2-04-016-01	SOIL	HC, THE, THP, BX
BO1GM5	A2-04-016-02	SOIL	HC, THE, THP. BX
B01GM6	A2-04-016-03	SOIL	HC, THE, THP, BX
B01GM8	A2-04-016-04	SOIL	HC, THE, THP, BX
BO1GM9	A2-04-016-05	SOIL	HC, THE, THP, BX

Method Codes: HC = EPA 418.1, THE = EPA 8015 EXTRACTABLE, THP = EPA 8015M PURGEABLE, BX = EPA 8020 BTEX

3.0 COMMENTS ON SAMPLE RECEIPT:

The samples were received intact and properly documented.

4.0 COMMENTS ON ANALYSIS:

4.1 EPA 418.1 - TOTAL PETROLEUM BY IR:

All samples were extracted and analyzed within method holding time.

The large difference in the duplicate analysis was attributed to sample inhomogeneity.

4.2 EPA 8015M - EXTRACTABLE HYDROCARBON:

All samples were extracted and analyzed within method holding time.

All QC results were acceptable. There were no problems encountered during analysis. Solvent peaks were eliminated using electronic subtraction. Both the raw and subtracted chromatograms have been included in the package.

4.3 EPA 8015M - PURGEABLE HYDROCARBONS:

All samples were analyzed within method holding And the second s time.

All QC results were acceptable. There were no problems encountered during analysis.

4.4 EPA 8020 - BTEX:

All samples were analyzed within method holding time.

All QC results were acceptable. There were no problems.

5.0 DATA PACKAGE COMMENTS:

The Format of the data deliverable was designed to meet or exceed the requirements of the Westinghouse Hanford Company Statement of Work. The intent of the package design is to provide sufficient data for "stand alone" validation. While the format of the package is "CLP like" Thermo Analytical Inc. makes no claim that this package duplicates in part or in total an EPA CLP data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Nicole Roth

CLP Manager

Mennis D. Wells Technical Director

000011

TMA Inc.

REPORT

Work Order # A2-04-016

eceived: 04/03/92	Results by Sample	
SAMPLE ID BOIGH4	SAMPLE # 01 FRACTIONS: A.B.C Date & Time Collected 03/30/92	Category
418_18	,	•
SAMPLE ID BOIGHS	SAMPLE # 02 FRACTIONS: B.E. Date & Time Collected 63/30/92	Category
418_1820.2 mg/Kg		
SAMPLE ID BOIGM6	SAMPLE # 03 FRACTIONS: E Date & Time Collected 03/30/92	Category
418_15 <u>63.6</u> mg/Kg		······································
SAMPLE 10 BOIGHS	SAMPLE # 04 FRACTIONS: A.B.C Date & Time Collected 03/30/92	Category
418_18 <u>15.3</u> mg/Kg		
SAMPLE 1D BOIGHS Publicate	SAMPLE # 04 FRACTIONS: P. Date & Time Collected 03/30/92	Category
418_15 <u>162</u> % RPD	•	
SAMPLE ID BOIGHS Blank Spike	SAMPLE # 04 FRACTIONS: E / Date & Time Collected 03/30/92	Category
! !	/ pare & lime Collected #3/30/92	category

000012

THA In

REPORT

Work Order # A2-84-814

Received: 04/03/92 Results by Sample

SAMPLE ID BOIGM9	SAMPLE # 05 FRACTIONS: A.B.C	
	Date & Time Collected 03/30/92	Category
1		
418_152.2		
mg/Kg		•
l		

000020

THA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID BOIGH4 FRACTION

FRACTION 018 TEST CODE 8015MS NAME EXTRACTABLE FUELS - TPM
Date & Time Collected 03/10/92 Category

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92
Dilution factor: 1.00
Concentration Units: mg/Kg

Compound	Sample Result	
Kerosene Range	ND	5.0
C10 - C16 Jet Fuel Renge	ND	5.0
C9 - C22 Diesel Range	ND	10.0
Nydraulic Range	МД	5.0

ND = Not detected at the specified limits

form I

THA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

SAMPLE ID BOIGH4

Results by Sample

FRACTION 81A TEST CODE 8015HV NAME Volatile Fuels-TPN
Date & Time Collected 93/10/92 Category

MODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92

Dilution factor: 5.00 Concentration Units: 49/Kg

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	ND	25.0

ND = Not detected at the specified limits

Form 1

THA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID <u>BOIGN4</u> FRACTION <u>BIA</u> TEST CODE <u>BTEX</u> NAME <u>BTEX by EPA 8020</u>

Date & Time Collected <u>93/10/92</u> Category

BTEX by EPA Nethod 8020

Matrix: Soil

Date Analyzed: 04/13/92
Dilution factor: 5.00
Concentration Units: ug/kg

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	MD	2.5
108-88-3	Teluene	22	2.5
100-41-4	Ethylbenzene	ND	2.5
1330-20-7	Xylenes (Total)	ND	2.5

% Recovery Surrogate Compound

Bromofluorobenzene ____95

ND = Not detected at the specified limits

form 1

000103

THA Inc.

REPORT

Results by Sample

Received: 04/03/92

SAMPLE ID 801GH5 FRACTION 02A TEST CODE 8015HV NAME Volatile Fuels-TPH

Date & Time Collected 03/30/92 Category ______

MODIFIED 8015 - VOLATILE FUEL NYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92
Dilution factor: 5.00
Concentration Units: ug/Kg

Compound Sample Result PQL

C5 - C12 Gasoline Range ND 25.0

ND = Not detected at the specified limits

Form I

TMA Inc.

Received: 04/03/92

SAMPLE ID BOIGHS

Results by Sample

FRACTION 02D TEST CODE 8015MS NAME EXTRACTABLE FUELS - TPM Date & Time Collected 03/30/92 Category ____

MODIFIED 8015 - EXTRACTABLE FUEL NYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92 Dilution factor: _____1.00 Concentration Units: ___mg/Kg

Compound	Sample Result	PQL
Kerosene Range	ND	5.0
C10 - C16 Jet Fuel Range	ND	5.0
C9 - C22 Diesel Range	ND	10.0
Hydraulic Range	24.2	5.0

ND = Not detected at the specified limits

form I

THA Inc.

REPORT

000134 Work Order # A2-04-016

Received: 04/03/92

SAMPLE ID BOTCHS

Results by Sample

FRACTION 02A TEST CODE BTEX NAME BTEX by EPA 8020

Date & Time Collected 03/30/92 Category ____

STEX by EPA Nethod 8020

Matrix: Soil

Date Analyzed: 04/13/92

Concentration Units: ___ug/Kg__

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	ND	2.5
108-88-3	Toluene	17.2	2.5
100-41-4	Ethylbenzene	ND	2.5
1330-20-7	Xylenes (Total)	ND	2.5

% Recovery Surrogate Compound

Bromofluorobenzene _____74

ND = Not detected at the specified limits

Form I

. 000026

THA INC.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID BOIGN6 FRACTION 638

FRACTION 638 TEST CODE 801585 NAME EXTRACTABLE FUELS - TP8

Date & Time Collected 63/30/92 Category

MODIFIED 8015 - EXTRACTABLE FUEL MYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92
Dilution factor: 1.00
Concentration Units: mg/Kg

Compound	Sample Result	PQL
Kerosene Range	MD	5.0
C10 - C16 Jet Fuel Range	MD	5.0
C9 - C22 Diesel Range	ND	10.0
Hydraulic Range	63.0	5.0

ND = Not detected at the specified limits

form 1

THA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

FRACTION 93A TEST CODE BTEX HAME BTEX by EPA 8020 SAMPLE ID BOIGHS Date & Time Collected 93/30/92 Category ___

STEX by EPA Nethod 8020

Matrix: Soil

Date Analyzed: 04/13/92

Concentration Units: ___ug/Kg__

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	MD	2.5
108-88-3	Toluene	14	2.5
100-41-4	Ethylbenzene	ND	2.5
1330-20-7	Xylenes (Total)	MD	2.5

% Recovery Surrogate Compound

Bromofluorobenzene ____82

ND - Not detected at the specified limits

form 1

THA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID BOTCH6

FRACTION 03A TEST CODE 8015MY NAME Volatile Fuels-TPB

Date & Time Collected 03/30/92 Category ______

HODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92
Dilution factor: 5.00
Concentration Units: ug/Kg

Compound	Sample Result	PQL	
C5 - C12 Gasoline Range	ND	25.0	

ND = Not detected at the specified limits

Form I

TMA Inc.

REPORT

Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID BOIGNS FRACTION 048

FRACTION <u>04B</u> TEST CODE <u>8015MS</u> NAME <u>EXTRACTABLE FUELS - TPM</u>

Date & Time Collected <u>03/30/92</u> Category _____

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARSONS

Matrix: Soil

Date Analyzed: 04/09/92

Dilution factor: 1.00

Concentration Units: mg/Kg

Compound	Sample Result	PQL
. Kerosene Range	ND	5.0
C10 - C16 Jet Fuel Range	ND	5.0
C9 - C22 Diesel Range	ND	10.0
Hydraulic Range	ND	5.0

ND = Not detected at the specified limits

Form I

TRA Inc.

REPORT .

Work Order # A2-04-016

Received: 04/03/92

SAMPLE ID BOTGMS

Results by Sample

accuracy by sample

FRACTION 04A TEST CODE BTEX NAME BTEX by EPA 8020

Date & Time Collected 03/30/92

Category ____

STEX by EPA Method 8020

Matrix: Soil

Date Analyzed: 04/13/92

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	ND	2.5
108-88-3	Toluene	13	2.5
100-41-4	Ethylbenzene	ND	2.5
1330-20-7	Xylenes (Total)	ND	2.5

% Recevery Surrogate Compound

ND = Not detected at the specified limits

form I

THA Inc. REPORT Work Order # A2-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID BOTCHS

FRACTION 94A TEST CODE 8015NV NAME Volatile Fuels-TPR Date & Time Collected 03/30/92

Category ____

MODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 04/09/92 Dilution factor: _____5.00 Concentration Units: ___ug/Kg

Compound	Sample Result	PQL	
C5 - C12 Casoline Range	ND	25.0	

ND = Not detected at the specified limits

form I

TRA Inc.

REPORT

Work Order # AZ-04-016

Received: 04/03/92

Results by Sample

SAMPLE ID <u>801GM9</u> FRACTION <u>058</u> TEST CODE <u>8015MS</u> MANE <u>EXTRACTABLE FUELS - TPB</u>

Date & Time Collected <u>03/30/92</u> Category

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARBONS

Natrix: Soil

Date Analyzed: 04/09/92
Dilution factor: 1.00
Concentration Units: mg/Kg

Compound	Sample Result	PQL
Kerosene Range	ND	5.0
C10 - C16 Jet Fuel Range	MD	5.0
C9 - C22 Diesel Range	ND	10.0
Hydraulic Range	ND	5.0

ND = Not detected at the specified limits

Form 1

THA INC.

REPORT

Work Order # A2-04-016

Received: 04/03/92

SAMPLE ID BOIGHT

Results by Sample

FRACTION 05A TEST CODE 8015RV NAME Volatile Fuels-TPH

Date & Time Collected 03/30/92 Category _____

MODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Natrix: Soil

Date Analyzed: 04/09/92 Dilution factor: 5.00
Concentration Units: 49/Kg

Compound	Sample Result	PQL	
C5 - C12 Gasoline Range	ND	25.0	

ND = Not detected at the specified limits

form I

SAMPLE PREP RECORD

Sheet no.:

Extract. Date: 04/10/92

Extraction Batch No: 92D1V017

Analyst: GJ

Method: N/A

Test: 0602

Cleanup Date:

Analyst:

Client: WESTINGHOUSE HANFORD

LIMS Report Date: 04/10/92

Solvent:

Adsorbent:

Client Name Sample No: Client ID	рН	Initial WT/VOL	Surr. Mult.	Spike F Mult.	inal VOL	Final VOL	Split Mult.	GPC % Y/N Solids	C/D FACTOR
9204L881- WESTINGHOUSE HANFORD 001 X B01GM7 001 XS B01GM7	7	5.0 5.0	1.0	1.0	5		1.0	N 34 N 34	2.9 2.9
001 XT B01GM7 92D1V017-MB1 X 92D1V017-MB1 XS	7 7 7	5.0 5.0 5.0	1.0 1.0 1.0	1.0	5 5 5		1.0 1.0 1.0	N 34 N	2.9 1.0

Comments: Surrogate: Spike:

Extracts Transferred	Relinquished By	Date Time	Received By	Date Time	Reason for Transfer

Roy F. Weston, Inc. - Lionville Laboratory 602X ANALYTICAL DATA PACKAGE FOR WESTINGHOUSE HANFORD

DATE RECEIVED:	04/03/92			1	RFW LOT # :9204L881						
CLIENT ID	RFW #	MTX	PREP #	COLLECTION	EXTR/PREP	ANALYSIS					
BO1GM7 BO1GM7 BO1GM7 LAB QC:	001 001 MS 001 MSD	\$ \$ \$	92D1V017 92D1V017 92D1V017	03/30/92 03/30/92 03/30/92	N/A N/A N/A	04/09/92 04/09/92 04/09/92					
BLK BLK	MB1 MB1 BS	S S	92D1V017 92D1V017	N/A N/A	N/A N/A	04/09/92 04/09/92					

WESTERN .

į

ROY F. WESTON, INC. Lionville Laboratory

Client: WESTINGHOUSE HANFORD

RFW #: 9204L881 (PETROLEUM HYDROCARBONS)

W.O. #: 6168-02-01-0000

J = Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10mg/L and a concentration of 3mg/L is calculated, it is reported as 3J.

NA = Not Applicable.

NR = Not Required.

HAY 1992

NC - Not calculable, results below detection limit.

The method used for the analysis of petroleum hydrocarbons is EPA Method 418.1 (USEPA 600/4-79-020). Solid samples are extracted using Method 9071 (USEPA SW846) then analyzed by EPA Method 418.1.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analysis:

- Blank was free of contamination.
- Blank spike recovery was inside laboratory control limits.
- Matrix spike recoveries were within laboratory control limits.

Samples Received: 04/03/92 Date of Extraction: 04/06/92 Date of Analysis: 04/09/92

J. Michael Taylor Project Director

Lionville Analytical Laboratory

4/13/92 Date

Roy F. Weston, Inc. - Lionville Laboratory PHC ANALYTICAL DATA PACKAGE FOR WESTINGHOUSE HANFORD

DATE RECEIVED:	04/03/92				ſ	RFW LOT # :9	204L881
CLIENT ID	RFW	#	MTX	PREP #	COLLECTION	EXTR/PREP	ANALYSIS
BO1GM7 BO1GM7 BO1GM7	001 001 001	MS MSD	- - \$ \$	92DHC080 92DHC080 92DHC080	03/30/92 03/30/92 03/30/92	04/06/92 04/06/92 04/06/92	04/09/92 04/09/92 04/09/92
LAB QC:							
	MB1 MB1	BS	S S	92DHC080 92DHC080	N/A N/A	04/06/92 04/06/92	04/09/92 04/09/92

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not requested. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Roy F. Weston, Inc. - Lionville Laboratory GCSC ANALYTICAL DATA PACKAGE FOR WESTINGHOUSE HANFORD

DATE RECEIVED: 04/03/92

RFW LOT # :9204L881

CLIENT ID	RFW #	MTX	PREP #	COLLECTION	EXTR/PREP	ANALYSIS
BO1GH7	001	s	92LE0528	03/30/92	04/06/92	04/11/92
BOIGH7 BOIGH7	001 MS 001 MSD	s	92LE0528 92LE0528	03/30/92 03/30/92	04/06/92 04/06/92	04/11/92 04/11/92
LAB QC:						
BLK	MB1	8	92LE0528	n/a	04/06/92	04/11/92
BLK	MB1 BS	S	92LE0528	n/a	04/06/92	04/11/92

TANK 100-N-SS-27
Sample Date December 18, 1990

MARTIN MARIETTA ENERGY SYSTEMS, INC.

POST OFFICE BOX 2003 OAK RIDGE, TENNESSEE 37831 -7440

PARTHIN MARKET

March 7, 1991

Ms. Joan Kessner Westinghouse Hanford Company Office of Sample Management 2344 Stevens Drive Richland, Washington 99352

Dear Ms. Kessner:

Analytical Results Package on Project 90-027: Underground Storage Tanks Sample Analysis

Attached are the results on the Underground Storage Tanks samples, Project 90-027, received into the Analytical Chemistry Department (ACD) laboratories on December 20, 1990. Also attached are the Chain of Custody records for the samples, a list detailing the protocol utilized in performing these analyses (in accordance with agreements between the OSM and K-25 ACD) and sample identification information.

The results are reported on ACD's AnaLis report format per letter dated December 20, 1990. All data quality objectives were satisified on this project.

The lead analysis on sample 27-102MS, a matrix sample, is incomplete at this time. However, in order that the data deliverables package on the project not be delayed any longer, the remainder of the package is being released. Resolution of this analysis is pending.

Lead

All the required quality control criteria was applied to the samples in the SDG. For this analysis all instrument calibrations (SPCC and CCC) were within acceptance criteria. The internal matrix spike percent recoveries for the TCLP analysis were within acceptance limits. Interference check samples results were within acceptable limits. Replicate analyses were conducted on samples in the SDG and all relative percent deviations were within acceptance limits. All internal controls and check standards run during these analyses were within the acceptance limits. At present the ACD cannot report the lead blank results through the AnaLis database, however it is required according to ACD QA/QC policy that no analysis result be reported for any element which is found in the prep blank above the data reporting limits. The raw data within the QA batch (SDG) for any particular analysis contains the prep blank data and is available upon request.

Semi-Volatiles: BNA

The samples were not extracted within the prescribed holding time, missing the seven (7) day holding time for extraction by seven (7) days. Once extracted, the samples were analyzed within the prescribed holding time. All surrogate standards criteria were within percent recovery acceptance limits. All DFTPP tune criteria were within acceptance criteria. All "CCC" and "SPCC" components met acceptance criteria for both the initial and continuing calibration check samples. All internal standard areas were within acceptance criteria. All matrix spikes and matrix spike duplicates were within the acceptance requirements.

Volatiles: VOA

All the samples were analyzed within the prescribed holding times. All surrogate standards criteria were within percent recovery acceptance limits. All BFB tune criteria were within acceptance criteria. All CCC and SPCC components met acceptance criteria for both the initial and continuing calibration check sample. All internal standard areas were within acceptance criteria. All matrix spikes and matrix spike duplicates were within the acceptance requirements.

I certify that this data package is in compliance with the terms and conditions of the OSM's revised Statement of Work and letter dated December 20, 1990, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Sincerely,

Deborah L. Amburgey

Program Manager

Hanford Support Program

Deborah Landurgay

Cherone R. Kulpstul
Clarence R. Kirkpatrick

Program Manager

Waste Management Analysis

Roy W. Morrow Department Manager

Analytical Chemistry Department (K-25)

Attachments

cc/attach:

D.L.Amburgey S.R.Smith - RC

cc:

N.P.Buddin

S.W.Goza

H.H.Sullivan

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

Results of Analyses

Analis ID: 901226-051

Project: G132 0275

Customer Sample ID: 27-101

Customer: KESSHER/ROOS

Requisition Number:

Date Sampled: 18-DEC-1990

Sampled By:

Date Sample Received: 20-DEC-1990 Date Sample Completed: 27-JAN-1991

Material Description: SOIL

[]: Result has been Corrected for Spike

Activ. Number	Procedure No.	Analysis	Result	Units	Analyst	QA File Rumber	Completed
102003	EPA-3050 EPA-7421	Load	<4.0	ug/g	P BUCKLEY	10123н	27—JAH-1991
132603		Prep (BRA- SM-846-Sox)	c ,		JH KREIS	1993	4-JAN-1991

Prep (BKA- SW-846-Sox)

Analyst

- JN KREIS

Date Extracted

- 3-JAH-1991

Sample Weight Extracted (g) = 10.00

Percent Solids

- 100

Calculated Dried Weight (g) = 10.00

Extraction Method

= Soxhlet

Extraction Solvent

= Methlylene Chloride/Acetone

Extraction Cleanup

= Sodium Sulfate

Final Volume of Extract (mL) = 1

Associated Blank

- 910103-263

Replicate Results of Analysis

	Replicate										
Analysis	Results	Results	RPD								
Load	<4.0	<4.0	0.0								

Program Manager: D. L. Amburgey Date Approved: 7-FEB-1991

Analis ID: 901226-051

Customer Sample ID: 27-101

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >10929

Sample Matrix: SOIL

Instrument ID: >5970-3

Requisition Number:

Authorised By: D. C. Canada

Date Sample Received: 20-DEC-1990

BMA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAN-1991

Date Analysed: 14-JAN-1991 Analysis Procedure Rumber: SNA (CLP) HDP

Preparation Procedure Number: EPA-3550

Dilution Factor: 1.0

Percent Moisture: Percent Moisture (decanted):

Analyst: C MEERAN

Associated Blank: 910103-263

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		uq/Kq
108-95-2	Phenol	9900	106-47-8	4-Chloroaniline	9900
111-44-4	bis(2-Chloroethyl)ether	9900	87-68-3	Hexachlorobutadiene	9900
95-57-8	2-Chlorophenol	1000	59-50-7	4-Chloro-3-methylphenol	9900
	1.3-Dichlorobensene	9900	91-57-6	2-Methylnaphthalene	9900
541-73-1	- ·	9900	77-47-4	Hexachlorocyclopentadiene	9900
106-46-7	1,4-Dichlorobensene	9900	88-06-2	2,4,6-Trichlorophenol	9900
100-51-6	Bensyl Alcohol	990U	95-95-4	2,4,5-Trichlorophenol	48000
95-50-1	1,2-Dichlorobensene	9900	91-58-7	2-Chloronaphthalene	990U
95-48-7	2-Methylphenol	9900	88-74-4	2-Mitrosniline	4800U
108-60-1	bis(2-Chloroisopropyl)ether	9900	131-11-3	Dimethylphthalate	9900
106-44-5	4-Hethylphenol	9900	208-96-8	Acenaphthylene	990U-
621-64-7	N-Hitroso-di-n-propylamine	9900	99-09-2		4800U
67-72-1	Hexachloroethane	9900	83-32-9	Acenaphthene	9900
98-95-3	Mitrobensene	5555		2.4-Dinitrophenol	4800U
78-59-1	Isophorone	9900		4-Witrophenol	4800U
88-75-5	2-Mitrophenol	9900		<u>-</u>	9900
105-67-9	2,4-Dimethylphenol	9960	132-64-9	Dibensofuran	9900
65-85-0	Benzoic Acid	4800U	121-14-2	2,4-Dinitrotoluene	9900
111-91-1	bis(2-Chloroethoxy)methane	9900	606-20-2	2,6-Dinitrotoluene	9900
120-83-2	2,4-Dichlorophenol	9900	84-66-2	• • •	9900
120-82-1	1,2,4-Trichlorobenzene	9900	7005-72-3	4-Chlorophenyl-phenylether	••••
91-20-3	Naphthalene	9900	86-73-7	Fluorene	9900

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

AMALYSIS DATA REPORT

AmaLIS ID: 901226-051

Customer Sample ID: 27-101

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSHER/ROOS

File ID: >10929

Sample Matrix: SOIL Requisition Number:

Instrument ID: >5970-3

į

Date Sample Received: 20-DEC-1990

Authorised By: D. C. Canada

BMA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAH-1991

Date Analyzed: 14-JAH-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: BMA (CLP) NDP

Percent Moisture:

Dilution Factor: 1.0

Percent Hoisture (decemted):

Analyst: C MEDIAN

Associated Blank: 910103-263

QA File Rumber: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	C).S		ug/Kg
100-01-6	4-Witroeniline	4800U	53-70-3	Dibens(a,h)anthracene	9900
300 00 0		48000	191-24-2	Benzo(g,h,i)perylene	990U
534-52-1		9900		•	
101-55-3	4-Bromophenyl-phenylether	9900			
118-74-1	Hexachlorobensene	9 90 U			
87-86-5	Pentachlorophenol	4800U			
85-01-8	Phenenthrone	990U			
120-12-7	Anthracene	9900			
84-74-2	Di-n-butylphthalate	360 JB			
206-44-0	Fluoranthene	990U			
129-00-0	Pyrene	9900			
85-68-7	Butylbensylphthalate	990U			
91-94-1	3,3'-Dichlorobensidine	2000U			
56-55-3	Benso (a) anthracene	990U			
117-81-7	bis(2-Sthylhexyl)phthalate	180 JB			
218-01-9	Chrysene	9900			
117-84-0	Di-n-octylphthelate	9900			
205-99-2	Benso(b)fluoranthene	9900			
207-08-9	Benso(k)fluoranthene	9900			
50-32-4	Senso(a)pyrene	9900			
193-39-5	Indeno(1,2,3-cd)pyrene	990U			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- NO Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 oak midge N-25 site Analytical Chemistry Department

(TCL) SOIL ORGANICS AUGLISIS DATA SHEETS TENTATIVELY IDENTIFIED COMPONES

Bumber TICs found: 4	QPC Cleanup: (Y/H) H	Extraction: (Sep?/Cont/Sonc) Soull	a Moisture: not dec. 0.0 dec.	rilation pactor: 1.0	Stable America over		Taboratory: Organic Mass Spectroscopy Laboratory	7-174 TD: 001226-051
(pg/L or ug/kg): <u>ug/kg</u>	Concentration Units	74.	Date Extracted: 3-JAN-1991	Date Analysed: 14-JAN-1991	Date Received: 20-DEC-1990	File ID: >10929	Customer: KESSKEI/NOCS	Customer Sample ID: 27-101

Rusber TiCs found: 4

30.	- 29	- 22	1 27	- 26.	- 25 	- 2	_ ::	= : ::	<u> </u>	- 8 	۔ اِ ق	5		ا ا	=	: :	<u>۔</u>	<u>ا</u> ا	= = 	-	- 	 : : 	 , ,		1	֧֧֧֓֟֟֟֝֟֝֟֝֟֝֟֝֟֟֝֟֝֓֓֓֟֟֟		-	5	
																											123-42-2		CA MARKE	
																									PROPAROIC ACID, 2-METHYL, 1(1,1-		123-42-2 2-Pentanone, 4-hydroxy-4-methy		COMPOUND NAME	
																									17.97	12.36	5.74	4.29	A	
	-	- -	-	-	-								<u> </u>												720	680	8100 JAB	48000 3	Mar. conc.	
	- <u> </u>	- -	- - -	- - -			· -					-													[3	BAL	[]		,

- U=Compound was analyzed for but not detected. The number is the attainable detection limit for the sample. B=Analyte was found in the reagent blank as well as the sample. J=Indicates an estimated value.
- ND Not detected.
- Aldol condensation product.
- Secondary dilution.
 Exceeds initial calibration range.
 Probable Identification.

AMALYSIS DATA REPORT

Analis ID: 901226-051

Customer Sample ID: 27-101

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS Sample Matrix: SOIL

File ID: >07744

Instrument ID: 70-2

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 20-DEC-1990

WOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared: Preparation Procedure Number:

Date Analysed: 27-DEC-1990 Analysis Procedure Number: VOA (CLP) HDP

Percent Moisture:

1.0 Dilution Factor:

Percent Moisture (decented):

Analyst: LM POTTER

Associated Blank: 901227-032

QA File Mumber: MA

[]: Result has been Corrected for Spike

C).S		ug/Kg	C).		ug/Kg
74-47-3	Chloromethane	100	79-00-5	1,1,2-Trichloroethane	50
74-83-9		100	71-43-2	Benzene	50
,, ,,	Vinyl Chloride	100	10061-02-6	trans-1,3-Dichloropropens	5 U
	Chloroethane	10U	75-25-2	Bromoform	50
	Methylene Chloride	50	108-10-1	4-Methyl-2-pentanone	100
	Acetone	32 B	591-78-6	2-Hexanone	100
• • • • •	Carbon Disulfide	50	127-18-4	Tetrachloroethene	50
	1,1-Dichleroethene	5U		1,1,2,2-Tetrachloroethane	50
· -	1.1-Dichloroethane	50	108-88-3		50
	1,2-Dichloroethene (total)	50	108-90-7	Chlorobensene	50
	•	Su		Ethylbensene	50
• • • • •	Chieroform	50	100-42-5	•	50
	1,2-Dichloroethane	18 8		Xylene (total)	5t
	2-Butanone		2330-20-7	17 Carr	
71-55-6	1,1,1-Trichloroethene	SU			
56-23-5	Carbon Tetrachloride	5 U			
108-05-4	Vinyl Acetate	100			
75-27-4	Bromodichloromethane	5 0			
78875	1,2-Dichloropropane	50			
10061-01-5	cis-1,3-Dichloropropene	5 U			
79-01-6	Trichloroethene	50			
	Dibromochloromethane	5 U			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the research blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

Analytical Chemistry Department Results of Analyses

Analis ID: 901226-052

Project: G132 0275

Customer Sample ID: 27-102

Customer: KESSMER/NOOS

Requisition Number:

Date Sample Received: 20-DEC-1990

Date Sampled: 18-DEC-1990

Date Sample Completed: 27-JAM-1991

Sampled By: .. Material Description: SOIL []: Result has been Corrected for Spike

Activ. Number	Procedure No.	Analysis	Result	Units	Analyst	QA File Number	Date Completed
102003	EPA-3050	Lead	5.8	ug/g	P BUCKLEY	10123Н	27-JAN-1991
132803		Prep (880- 5M-846-Sox)	c		JH TREIS	1993	4–JM 1991

Prop (BRA- 5M-846-Sox)

Analyst Date Extracted - JE KREIS

3-JAH-1991

Sample Weight Extracted (g) = 10.30

Percent Solids

= 92.5

Calculated Dried Weight (g) = 9.53

Extraction Method

= Sozhlet

Extraction Solvent

m Methlylene Chloride/Acetone

Extraction Cleanup

- Sodium Sulfate

Final Volume of Extract (mL) = 1

Associated Blank

- 910103-263

Spike Recovery Data

	Amount	Amount	Percent
Analysis	Spiked	Recovered	Recovered
LEAD	20.0	22.4	112.00

Program Manager: D. L. Amburgey Date Approved: 7-FEB-1991

WHC-SD-EN-TI-136, Rev. 0 Analytical Chemistry Department

BHA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AmaLIS ID: 901226-052 Laboratory: Organic Mass Spectroscopy Laboratory Sample Matrix: SOIL Level: (low/med): LOW Dilution Factor: 1.0 % Moisture: not dec. 7.5 dec. Extraction: (SepF/Cont/Sonc) SoxH	Customer: Sample ID: 27-102 Customer: KESSNER/ROOS File ID: >10930 Date Received: 20-DEC-1990 Date Analysed: 14-JAM-1991 Date Extracted: 3-JAM-1991 pH:
GPC Cleanup: (Y/M) H	Concentration Units
Number TICs found: 14	(ug/L or ug/kg): ug/kg

Bumber TICs found: 14

AS MARKER	COMBOUND MAKE	kt l	EST. CONC.	9
123-42-2	2-Pentanone, 4-hydroxy-4-methy	5.76		
	2-Pyrrolidinone, 1-methyl-	9.68	460	3
	LEGISLORY	12.37	670	JB
	LINICIONET	16.31	420	J
	UNECOMM SATURATED HYDROCARBON	19.31	450	JB
	1,2-Bensenedicarboxylic acid,b	21.16	940	JB
	UNICHONN SATURATED HYDROCARBON	21.57	790	78
	UNICHONN PHTHALATE ESTER	21.67		ЛВ
	UNICOUNT HYDROCARDON	23.62		
•	UNDERCOME SATURATED HYDROCARSON	25.49	1800	JB
	URDONNI	25.63	950	1 3
•	UNICIONE SATURATED HYDROCARSON	26.37	1600	1
•	LEGICIONI SATURATED HYDROCARBON	28.01		
•	LEGISTORY	33.01	770	13
		1	<u></u>	<u> </u>
•			1	<u> </u>
			<u> </u>	<u> </u>
			<u> </u>	<u> </u>
·	1	<u></u>	<u> </u>	
			<u> </u>	
		1	<u> </u>	
2	1	1	<u> </u>	
s			<u> </u>	! —
l	<u> </u>			!
s	1		<u> </u>	! —
۶	1		<u> </u>	<u> </u>
7	1	1	<u> </u>	<u> </u>
٠	<u> </u>	_1	<u> </u>	-
9		1		

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0 AMALYSIS DATA REPORT

Page 1 of 1

Analis ID: 901226-052

Customer Sample ID: 27-102

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >07745

Sample Matrix: SOIL

Instrument ID: 70-2

Requisition Number:

Authorised By: D. C. Canada

Date Sample Received: 20-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analysed: 27-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: VOA (CLP) NDP

1.0

Percent Moisture: Percent Moisture (decanted): Dilution Factor:

Analyst: LM POTTER

Associated Blank: 901227-032

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Eq	CAS		ug/Kg
74-67-3	Chloromethane	100	79-00-5	1,1,2-Trichloroethane	5U
74-83-9	Bromomethane	1 0 U	71-43-2	Senzene	50
75-01-4	Vinyl Chloride	10U	10061-02-6	trans-1,3-Dichloropropene	SU
75-00-3	Chloroethane	100	75-25-2	Bromoform	50
75-09-2	Methylene Chloride	5 U	108-10-1	4-Methyl-2-pentanone	100
67-64-1	Acetone	100	591-78-6	2-Hexanone	100
75-15-0	Carbon Disulfide	50	127-18-4	Tetrachloroethene	5 U
75-35-4	1,1-Dichloroethene	SU	79-34-5	1,1,2,2-Tetrachloroethane	5 0
75-34-3	1,1-Dichleroethane	50	108-88-3	Toluene	50
540-59-0	1,2-Dichloroethene (total)	5 U	108-90-7	Chlorobensene	5 U
67-66-3	Chloroform	50	100-41-4	Ethylbensene	5 U
107-06-2	1,2-Dichloroethane	SU	100-42-5	Styrene	Su
	2-Butanone	17 B	1330-20-7	Xylene (total)	SU
71-55-6	1.1.1-Trichloroethane	50			
56-23-5	Carbon Tetrachloride	50			
108-05-4	Vinyl Acetate	100			
75-27-4	Bromodichloromethane	50			
78-87-5	1,2-Dichloropropene	50			
10061-01-5	cis-1,3-Dichloropropene	50			
79-01-6	Trichleroethene	5 U			
124-48-1	Dibromochloromethane	5 U			

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 oak Ridge E-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Sample Matrix: SOT Level: (low/med): Dilution Factor: % Moisture: not de	LOM 1.0	Customer Sample ID: 27-102 Customer: KESSMER/ROOS Pile ID: >07745 Date Received: 20-DEC-1990 Date Analysed: 27-DEC-1990 Concentration Units (ug/L or ug/Kg): ug/Kg									
Number TICs found:		(uq/L or uq/kq): uq/kq									
CAS RIPER		· · · · · · · · · · · · · · · · · · ·									
	Acetic acid	15.82	5	JI							
1 2.	l										
3	<u> </u>			<u> </u>							
1 4				<u> </u>							
1 5											
6	<u> </u>			!							
1 7.	·	<u></u>		''							
ļ •	<u> </u>										
1 9		1									
11	1										
12	1			ا							
13.	Ĭ			<u> </u>							
14	1	1									
15	<u> </u>			<u></u> !							
16			<u> </u>	! !							
17	<u> </u>			<u> </u>							
118			l	<u></u> '							
			<u> </u>	 							
20		1									
22	•										
23			1								
24		1		1							
25	1		L	1							
26			l	1							
27			L								
28		1	L								
29.	<u> </u>	1	<u></u>	 							
30.	1		<u> </u>	1							

- U Compound was analysed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

Analytical Chemistry Department Results of Analyses

Analis ID: 901226-055

Project: G132 0275

Customer Sample ID: 27-103

Customer: KESSHER/ROOS

Requisition Number:

Date Sampled: 18-DEC-1990

Date Sample Received: 20-DEC-1990 Date Sample Completed: 27-JAN-1991

Sampled By:

[]: Result has been Corrected for Spike

Material Description: SOIL

Activ. Number	Procedure No.	Analysis	Result	Units	Analyst	QA File Number	Completed
102003	ZPA-3050 EPA-7421	Load	8.8	ug/g	9 BUCKLEY	10123H	27-JAN-1991
132603		Prep (BNA- SM-846-Sox)	c		JE KREIS	1993	4-Jan-1991

Prop (BRA- SW-846-Sox)

- JH KREIS Analyst - 3-JAH-1991 Date Extracted Sample Weight Extracted (g) = 10.15 Percent Solids Calculated Dried Weight (g) = 9.47 = Soxhlet Extraction Method = Methlylene Chloride/Acetone Extraction Solvent = Sodium Sulfate Extraction Cleanup

Final Volume of Extract (mL) = 1

- 910103-263 Associated Blank

> Program Manager: D. L. Amburgey Date Approved: 7-FEB-1991

ANALYSIS DATA REPORT

Analis ID: 901226-055

Customer Sample ID: 27-103

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSHER/ROOS

file ID: >10933

Sample Matrix: SOIL

Instrument ID: 5970-3

Requisition Number:

Authorised By: D. C. Canada

Date Sample Received: 20-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAM-1991

Date Analysed: 14-JAM-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: BMA (CLF) HDP Dilution Factor: 2.0

Percent Moisture:

Analyst: C MEDIAN

Percent Moisture (decented):

QA File Mumber: NA

Associated Blank: 910103-263

[]: Result has been Corrected for Spike

CAS .		ug/Kg	CAS		ug/Kg
	There is a second secon	2100U	106-47-8	4-Chloroeniline	2100U
108-95-2		2100U	87-68-3	Mexachlorobutadiene	2100U
111-44-4	bis(2-Chloroethyl)ether	21000	59-50-7	4-Chloro-3-methylphenol	2100U
95–57–8	2-Chlorophenol		91-57-6	2-Methylnaphthalene	2100U
541-73-1	1,3-Dichlorobensene	2100U	-	Hexachlorocyclopentadiene	2100U
106-46-7	1,4-Dichlorobensene	2100U	77-47-4		2100U
100-51-6	Bensyl Alcohol	21 00 U	88-06-2	2,4,6-Trichlorophenol	100000
95-50-1	1,2-Dichlorobensene	2100U	95-95-4	2,4,5-Trichlorophenol	2100U
95-48-7	2-Methylphenol	2100U	91-54-7	2-Chloronaphthalene	
108-60-1	bis(2-Chloroisopropyl)ether	210 0 U	88-74-4	2-Mitroeniline	10000U
106-44-5		2100U	131-11-3	Dimethylphthalate	2100U
• • • • •		21000	208-96-8	Acenaphthylene	2100U
621-64-7		21000	99-09-2	3-Mitroaniline	10000U
67-72-1		2100U	83-32-9	Acegaphthene	2100U
9 8-95 -3		2100U	51-28-5	2,4-pinitrophenol	10000U
78-59-1	Isophorone			4-Mitrophenol	10000U
88-75-5	2—Eitrophenol	2100U	100-02-7		2100U
105-67-9	2,4-Dimethylphenol	2100U	132-64-9	Dibensofuran	2100U
65-85-0	Bensoic Acid	10000U	121-14-2	2,4-Dinitrotoluene	
111-91-1	bis(2-Chloroethoxy)methane	21 00 U	606-20-2	2,6-Dinitrotoluene	21000
120-83-2		21000	84-66-2	Diethylphthalate	200 B
120-82-1		21000	7005-72-3	4-Chlorophenyl-phenylether	2100U
91-20-3		2100U	86-73-7	fluorene	2100U

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

)

Analis ID: 901226-055

File ID: >10933

Authorized By: D. C. Canada

Instrument ID: 5970-3

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: 27-103

Customer: KESSNER/ROOS

Sample Matrix: SOIL

Requisition Number:

Date Sample Received: 20-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAN-1991

Date Analyzed: 14-JAN-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: SNA (CLP) NDP

Percent Moisture:

Dilution Factor: 2.0

Analyst: C MEERAN

Percent Moisture (decanted):

QA File Number: NA

Associated Blank: 910103-263

[]: Result has been Corrected for Spike

CAS		uq/Kq	CAS		ug/Kg
100-01-6	4-Hitroeniline	10000U	53-70-3	Dibens(a,h)anthracene	380 J
534-52-1	4,6-Dinitro-2-methylphenol	10000U	191-24-2	Benzo(g,h,i)perylene	2100U
86-30-6	N-Hitrosodiphenylamine	2100U			
101-55-3	4-Bromophenyl-phenylether	2100U			
118-74-1	Hexachlorobensene	2100U			
87-86-5	Pentachlorophenol	100000			
85-01-8		2100U			
120-12-7		2100U			
84-74-2	Di-n-butylphthalate	3800 B			
206-44-0	-	21000			
129-00-0	Pyrene	210 0 U			
85-68-7	Butylbensylphthalate	2100U			
91-94-1	3,3'-Dichlorobensidine	4200U			
56-55-3		210 0 U			
117-81-7	bis(2-Ethylhexyl)phthalate	490 JB			
218-01-9	<u> </u>	220 J			
117-84-0	Di-n-octylphthalate	2100U			
205-99-2	Benso(b)fluoranthene	2100U			
207-08-9	Benzo(k)fluoranthene	210 J			
50-32-8	Benso(a)pyrene	270 J			
193-39-5		200 J			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

D-203

Probable Identification.

Exceeds initial calibration range.

Aldol condensation product.

Secondary dilution.

ð Not detected.

Indicates an estimated value.

Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
 Analyte was found in the reagent blank as well as the sample.

Data Reporting Qualifiers:

 :		- 2	27.	76.	1 25.	- 2	- 23. 	- 22	_ 	- 8 	- is 	- !	- 57	- • •	- is	=======================================	_ 	-		: 	۔ ا	•	- - 	- ; ; [֓֞֞֜֜֞֜֞֜֝֟֝֟֝֟֝֟֝֟֝֟֟֝֟֟֝		ָ 	,		-	2
																														123-12-2	CAS MURBER
																									UNDOORS SATURATED HYDROCARSON	UNDOOMS SATURATED HYDROCAUBON	UNICHONE SATURATED HYDROCARBON	UNDSICHE SATURATED HYDROCARBON		123-42-21 2-Pentanone, 4-hydroxy-4-methy	COMPOUND NAME
																									26.36	25.40	21.56	19.32	12.36	5.72	ä
	-	-						- -	- -	- -		- -				- -									1100	1300	880	930	1500	\$700	257. CORC.
- 		-		- -	-	-	- }-	- -	- -	- -		- - - -	- - -		- <u> -</u>	- <u> </u>	- <u> </u>	-	-						73	38 -	ង	23	5	JEA	•

44

(mg/L or mg/Kg): mg/Kg Concentration Units

Number TICS found: 6

ODC Cleanup:

(K/X)

6.7 dec.

Pile ID: >10933

Date Received: 20-DEC-1990

Date Analysed: 14-JNN-1991

Date Extracted: 3-JNN-1991 Customer: XESSMEN/2005 Customer Sample ID: 27-103

Analis ID: 901226-055
Laboratory: Organic Mass Spectroscopy Laboratory Noisture: not dec. 6.7 dec. Extraction: (Sep?/Cont/Sonc) SonH Dilution Factor: Sample Matrix: SOIL Level: (low/med): LOW

BEA (TCL) SOIL OBGANICS ANALYSIS DATA SHEETS TESTANTIVELY IDESTIFIED COMPOUNDS

WHC-SD-EN-TI-136, Rev. 0 Analytical Chemistry Department

Analis ID: 901226-055

Customer Sample ID: 27-103

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >07748

Authorized By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 70-2

Requisition Number:

Date Sample Received: 20-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 27-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: VOA (CLP) HDP

Percent Moisture:

Dilution Factor: 1.0

Percent Moisture (decanted):

Analyst: LM POTTER

QA File Humber: NA

Associated Blank: 901227-032

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
74-87-3	Chloromethane	100	79-00-5	1,1,2-Trichloroethane	50
74-83-9	Bromomethane	100	71-43-2	Senzene	5 U
		100	10061-02-6	trans-1,3-Dichloropropene	5 U
75-01-4		100	75-25-2	Bromoform	50
75-00-3	Chloroethane	2 3	108-10-1	4-Methyl-2-pentanone	2 J
	Methylene Chloride	48 B	591-78-6	• •	100
	Acetone			Tetrachloroethene	SU
75-15-0	Carbon Disulfide	50			SU
75-35-4	1,1-Dichloroethene	50		1,1,2,2-Tetrachloroethane	50 50
75-34-3	1,1-Dichloroethane	5U	108-88-3	Toluene	
540-59-0	1,2-Dichloroethene (total)	50	108-90-7	Chlorobensene	50
67-66-3	· •	50	100-41-4	Ethylbensene	50
• • • • •	1.2-Dichloroethane	50	100-42-5	Styrene	50
78-93-3	-,	14 B	1330-20-7	Xylene (total)	50
	= :	5 U		•	
	1,1,1-Trichloroethane	- -			
56-23-5	Carbon Tetrachloride	50			
108-05-4	Vinyl Acetate	10V			
75-27-4	Bromodichloromethene	50			
78-87-5	1,2-Dichloropropane	5 U			
10061-01-5	cis-1,3-Dichloropropene	50			
79-01-6	Trichloroethene	50			
124-48-1	Dibromochloromethane	50			

Data Reporting Qualifiers:

A - Aldol condensation product.

E - Exceeds initial calibration range.

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

D - Secondary dilution.

WHC-SD-EN-TI-136, Rev. 0 oak Ridge K-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS

TENTATIVELY IDENTIFIED COMPOUNDS

Rumber TICs found: 1	(ug/L or ug/kg): ug/kg
	Concentration Units
Moisture: not dec.	
Dilution Factor: 1.0	Date Analyzed: 27-DEC-1990
Level: (low/med): LOW	Date Received: 20-DEC-1990
Sample Matrix: SOIL	Pile ID: >07748
aboratory: Organic Mass Spectroscopy Laboratory	Customer: KESSNER/ROOS
neLIS ID: 901226-055	Customer Sample ID: 27-103

CAS BURBER	COMPOUND NAME	RT	EST. CONC.	Q
l	UNICOM	5.33	•	J
2		1	l	<u> </u>
3.	1		L	<u> </u>
١				<u> </u>
5.	1		<u> </u>	<u> </u>
5			1	<u> </u>
7.	1		<u> </u>	L
ð.			<u></u> _	1
9.			<u> </u>	<u> </u>
o				<u> </u>
1.		1	l	<u> </u>
2				<u> </u>
3	1	1	1	<u> </u>
4	1		1	<u> </u>
5			1	<u> </u>
6			l	<u> </u>
7			L	
٠	1		L	
9			1	
0			1	
1.				
2.			1	L
3		1	1	1
4.		1	1	1
5.	1			1
6		<u> </u>	1	1
7		1 .		1
8			1	1
9.		1	1	1
io.			1	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

Results of Analyses

Analis ID: 901226-056

Project: G132 0278

Customer Sample ID: 27-104

Customer: KESSNER/ROOS

Requisition Number:

Date Sampled: 18-DEC-1990

Date Sample Received: 20-DEC-1990

Sampled By:

Date Sample Completed: 27-JAN-1991

Material Description: SOIL

[]: Result has been Corrected for Spike

Activ. Mumber	Procedure No.	Analysis	Result	Units	Analyst	QA File Number	Completed
102003	EPA-3050 EPA-7421	Load	4.8	ug/g	P BUCKLEY	10123H	27- JAN- 1991
132803		Prep (880 SW-846-Sox)	c		JH KREIS	1993	4-JAN-1991

Prop (BMA- SW-846-Sox)

- JH KREIS Analyst = 3-JAM-1991 Date Extracted Sample Weight Extracted (g) = 10.32 = 92.7 Percent Solids Calculated Dried Weight (g) = 9.57

Extraction Method = Soxhlet

= Methlylene Chloride/Acetone Extraction Solvent

- Sodium Sulfate Extraction Cleanup

Final Volume of Extract (mL) = 1

= 910103-263 Associated Blank

> Program Manager: D. L. Amburgey Date Approved: 7-FEB-1991

Analis ID: 901226-056

Customer Sample ID: 27-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSMER/ROOS

Pile ID: >10934

Sample Matrix: SOIL

Instrument ID: 5970-3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 20-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAN-1991

Date Analysed: 14-JAM-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: SNA (CLP) MDP

5.0

Percent Moisture:

Dilution Factor:

Analyst: C MEEHAN

Percent Moisture (decented):

QA File Number: NA

Associated Blank: 910103-263

[]: Result has been Corrected for Spike

7.3

CAS		ug/Kg	CAS		ug/Kg
108-95-2	Phenol	5200U	106-47-8	4-Chloroeniline	5200U
•		5200U	87-68-3	Hexachlorobutadiene	52000
111-44-4	bis(2-Chloroethyl)ether	5200U	59-50-7	4-Chloro-3-methylphenol	52000
95-57-8	2-Chlorophenol		91-57-6	2-Methylnaphthalene	24000
541-73-1	1,3-Dichlorobensene	5200U		• •	5200U
106-46-7	1,4-Dichlorobensene	5200U	77-47-4	Hexachlorocyclopentadiene	5200U
100-51-6	Bensyl Alcohol	5200U	8 8- 0 6 -2	2,4,6-Trichlorophenol	
95-50-1		5200U	95-95-4	2,4,5—Trichlorophenol	26000U
95-48-7		52000	91-58-7	2-Chloronaphthalene	5200U
		5200U	88-74-4	2-Mitroeniline	26000U
108-60-1	- · · · · · · · · · · · · · · · · · · ·	5200U	131-11-3	Dimethylphthalate	5200U
106-44-5	• •		208-96-8	Acenaphthylene	5200U
621-64-7	M-Mitroso-di-n-propylamine	5200U		• • • • •	26000U
67-72-1	Hexachloroethane	52 00 U	9 9- 09-2	3-Mitroeniline	•••••
98-95-3	Nitrobensene	5200U	83-32-9	Acenaphthene	760 J
78-59-1	Isophorone	5200U	51-28-5	2,4-Dinitrophenol	260000
88-75-5		5200U	100-02-7	4-Mitrophenol	260000
105-67-9		5200U	132-64-9	Dibensofuran	52000
65-85-0		26000U	121-14-2	2,4-Dinitrotoluene	5200U
		5200U	606-20-2	2,6-Dinitrotoluene	5200U
111-91-1		5200U	84-66-2		5200U
120-83-2	2,4-Dichlorophenol	• • • • • • • • • • • • • • • • • • • •		• •	5200U
120-82-1	1,2,4-Trichlorobensene	5200U	7005-72-3	4-Chlorophenyl-phenylether	52000
91-20-3	Naphthalene	5200U	86-73-7	Fluorene	32000

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

Analis ID: 901226-056

Customer Sample ID: 27-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >10934

Sample Matrix: SOIL

Instrument ID: 5970-3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 20-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAN-1991

Date Analyzed: 14-JAN-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: BNA (CLP) NDP Dilution Factor:

Percent Moisture:

Analyst: C MEEHAN

Percent Moisture (decanted):

QA File Number: NA

Associated Slank: 910103-263

[]: Result has been Corrected for Spike

CAS		ug/Kg	CNS		ug/kg
100-01-6	4-Mitroeniline	26000U	53-70-3	Dibens(a,h)anthracene	560 J
534-52-1	4,6-Dinitro-2-methylphenol	26000U	191-24-2	Benso(g,h,i)perylene	5200U
86-30-6	N-Mitrosodiphenylamine	5200U			
101-55-3	4-Bromophenyl-phenylether	5200U			
118-74-1	Hexachlorobensene	5200U			
87-86-5	Pentachlorophenol	26000U			
85-01-8	Phenanthrene	3600 J			
120-12-7	Anthracene	5200U			
84-74-2	Di-n-butylphthalate	3400 J			
206-44-0	Pluoranthene	7200			
129-00-0	Pyrene	7200			
85-68-7	Butylbensylphthalate	5200U			
91-94-1	3,3'-Dichlorobensidine	100000			
56-55-3	Benzo (a) anthracene	4100 J			
117-81-7	bis(2-Sthylhexyl)phthalate	1600 J			
218-01-9	Chrysene	6100			
117-84-0	Di-n-octylphthalate	5200U			
205-99-2	Benso(b)fluoranthene	6000			
207-08-9	Benzo(k)fluoranthene	5200U			
50-32-8	Benso(a)pyrene	4000 J			
193-39-5	Indeno(1,2,3-cd)pyrene	5200U			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Analytical Chemistry Department

EMA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901226-056	Customer Sample ID: 27-104
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: KESSMER/ROOS
Sample Matrix: SOIL	File ID: >10934
Level: (low/med): LOW	Date Received: 20-DEC-1990
Dilution Factor: 5.0	Date Analyzed: 14-JAN-1991
% Moisture: not dec. 7.3 dec.	Date Extracted: 3-JAN-1991
Extraction: (SepF/Cont/Sonc) SoxH	pii:
GPC Cleanup: (Y/N) N	
· -	Concentration Units
member PTCs found: 21	(ug/L or ug/kg): ug/kg

musher TTCs found: 21

AS MURBER	COMPOUND NAME	,	EST. CONC.	
•	UNKNOWN SATURATED HYDROCARBON		44000	
	1,3,5-Trimethylbenzene	8.39	46000	<u>J</u>
	BENZENE, 1-STHYL-METHYL	8.56	17000	JY
·	BERZENE, 1-STHYL-METHYL	9.41	43000	1X
·	UNICIONE SATURATED HYDROCARBON	9.62	40000	J
•	BENEERE, 1-METHYL-PROPYL	9.98	95000	JY
·	BENZERE, -ETHYL-DIMETHYL	10.11	61000	JY
•	BENZENE, -STHYL-DIMETHYL	10.43	33000	JY
·	BENZENE, -ETHYL-DIMETHYL	10.47	17000	JY
·	Bensene, METHYL-METHYLETHYL	10.62	77000	174
•	UNICIONE ARCHATIC HYDROCARBON	10.88	8800	13
	UNICIONN ARONATIC HYDROCARBON	11.47	6700	J
	URBRIGHM AROMATIC HYDROCARBON	11.58	17000	J
•	UNICHONN ARCHATIC HYDROCARBON	11.74	23000	J
	UNIQUOMI ARCHATIC HYDROCARBON	11.86	11000	J
	UNIQUOM ARCHATIC HYDROCARBON	11.96	12000	J
	UNICIONE ARCHATIC HYDROCARBON	12.11	6200	13
	BENZENE, -DINETHYL-NETHYLETHYL	12.49		
·	URROWN	13.33	6500	1 3
o	H-INDEME, 2.3-DIHYDRO-DIMETHYL	13.54	6600	JY
١.	NAPHTHALENE, 1-HETRYL	14.37	11000	<u> </u>
2		1	L	<u> </u>
3		1	<u></u>	
4.		1	<u> L</u>	<u></u>
5			<u> </u>	
6		<u> </u>	<u> </u>	
7				1
·		<u> </u>	<u></u>	<u> </u>
9		1	l	1

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- $\ensuremath{\mathtt{B}}$ Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

AUALYSIS DATA REPORT

Analis ID: 901226-056

Customer Sample ID: 27-104

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSHER/ROOS

File ID: >07775

Authorised By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 70-2

Requisition Number:

Date Sample Received: 20-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analysed: 31-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: VOA (CLP) NDP 100.0 Dilution Factor:

Percent Moisture:

Percent Moisture (decanted):

Analyst: LM POTTER

Associated Blank: 901231-001

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	C).S		ug/Kg
74-87-3	Chloromethane	1300U	79-00-5	1,1,2-Trichloroethane	630U
74-63-9	Bromomethane	13000	71-43-2	Bensene	63 0 U
75-01-4	Vinyl Chloride	1300U	10061-02-6	trans-1,3-Dichloropropene	6300
75-00-3	Chloroethane	1300U	75-25-2	Bromeform	6300
75-09-2	Methylene Chloride	260 ЛВ	108-10-1	4-Methyl-2-pentanone	13000
67-64-1	Acetone	1300U	591-78-6	2-Hexanone	5400
75-15-0		630U	127-18-4	Tetrachloroethene	6300
75-35-4		630U	79-34-5	1,1,2,2-Tetrachloroethane	630U
75-34-3		630U	108-88-3	Toluene	630U
	1.2-Dichloroethene (total)	630U	108-90-7	Chlorobenzene	160 J
67-66-3	· •	630U	100-41-4	Ethylbenzene	630U
	1.2-Dichloroethane	630U	100-42-5	Styrene	630U
78-93-3	- •	13000	1330-20-7	Xylene (total)	13000
	1.1.1-Trichloroethane	6300		-	
71-33-6 56-23-5		630U			
	***************************************	1300U			
	Vinyl Acetate Bromodichloromethane	630U			•
75-27-4		6300			
	1,2-Dichloropropane				
10061-01-5	• •	6300			
7 9- 01 - 6	••••	630U			
124-48-1	Dibromochloromethane	630U			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

AnaLIS ID: 901226-056 Laboratory: Organic Mass Spectroscopy Laboratory Sample Matrix: SOIL Level: (low/med): LOW Dilution Factor: 100.0	Customer Sample ID: 27-104 Customer: KESSMER/ROOS File ID: >077775 Date Received: 20-DEC-1990 Date Analysed: 31-DEC-1990
% Moisture: not dec.	Concentration Units
muhan STGs farmés - 0	(ug/L or ug/kg): ug/kg

Number TICs found: 9

URREACH URREACH URREACH URREACH URREACH URREACH URREACH URREACH URREACH URREACH	N YL HEPTANE M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON METHYL BENEENE ISOMER		930 630 520 1900 820 930 11000	J J J J J
3-NETH URROROM URROROM URROROM URROROM URROROM URROROM URROROM URROROM URROROM URROROM	YL HEPTANE H HYDROCARBON H HYDROCARBON H HYDROCARBON H HYDROCARBON H HYDROCARBON H HYDROCARBON	16.00 17.39 17.55 19.09 21.30 22.06	\$20 1900 \$20 \$30 11000	J J J J J
URRORAM URRORA	N HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON	17.39 17.55 19.09 21.30 22.06	1900 820 930 1 11000] J J J
URROROM URRORO	M HYDROCARBON M HYDROCARBON M HYDROCARBON M HYDROCARBON	1 17.55 1 19.09 1 21.30 1 22.06	820 930 11000 2000	J J J
URROROM URROROM URROROM URROROM ETHYL	M HYDROCARBON N HYDROCARBON N HYDROCARBON	19.09 21.30 22.06	930 1 11000 2000	3 3 3
USESSION USE	M HYDROCARBON N HYDROCARBON	21.30	11000	J J
UNIGONA UNIGONA ETHYL	RY HYDROCARBON RY HYDROCARBON	22.06	2000	J
LURISHOM FIRST L L L L L L L L L L L L L	N HYDROCARBON			
ETHYL		22.45 	23000 	J
			<u> </u>	
			<u></u>	
		1	<u> </u>	<u> </u>
·			1	
·			ł	1
·				
			L	
			<u> </u>	1
7			1	
·				<u> </u>
)		1	l	
·			1	1
			1	
l·		1	l	
			1	
3·			1	1
٠ <u>.</u>		1	1	
5·		1		1
6		1	1	1
7		1	1	
8 9		<u> </u>	1	L

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department Results of Analyses

AmeLIS ID: 901226-057

Sampled By:

Material Description: SOIL

Date Sampled: 18-DEC-1990

Customer: KESSKER/ROOS

Project: G132 0275

Customer Sample ID: 27-105

Requisition Humber:

Date Sample Received: 20-DEC-1990 Date Sample Completed: 27-JAM-1991

[]: Result has been Corrected for Spike

Activ. Number	Procedure No.	Analysis	Result	Units	Anelyst	QA File Number	Date Completed
102003	EPA-3050 EPA-7421	Land	4.3	ug/g	P BUCKLEY	10123m	27-Jan-1991
132803	EPA-3550	Prep (BIO- 5N-846-Sox)	c		JH HREIS	1993	4–Jan –1991

Prep (BKA- 5N-846-50x)

Analyst

- JH KREIS

Date Extracted

= 3-JAH-1991

Sample Weight Extracted (g) = 10.60

Percent Solids

= 92.5

Calculated Dried Weight (g) = 9.81

- Soxhlet

Extraction Method Extraction Solvent

= Methlylene Chloride/Acetone

Extraction Cleanup

= Sodium Sulfate

Final Volume of Extract (mL) = 1

Associated Blank

= 910103-263

***** Comments from the Organic Mass Spectroscopy Laboratory *****

THIS SAMPLE DOES NOT MEET CLP SOW OR LABORATORY GAP CRITERIA FOR SURROGATE STANDARD & RECOVERY FOR EXTRACTABLE ORGANICS. TWO OR MORE SURROGATE STANDARDS WERE OUTSIDE ACCEPTANCE CRITERIA LIMITE DUE TO MATRIX EFFECT AND DILUTION. INTERNAL STANDARD AREAS WERE WITHIN CLP SOW AND LABORATORY GAP ACCEPTANCE CRITERIA.

> Program Hanager: D. L. Amburgey Date Approved: 7-FEB-1991

Page 1 of 2

Analis ID: 901226-057

Customer Sample ID: 27-105

Laboratory: Organic Mass Spectroscopy Laboratory

Sample Matrix: SOIL

Customer: KESSMER/ROOS

File ID: 10935

Requisition Number:

Date Sample Received: 20-DEC-1990

Instrument ID: 5970-3

Authorized By: D. C. Canada

BMA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAM-1991

Date Analyzed: 14-JAN-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Number: BNA (CLF) MDP

Percent Moisture:

Dilution Factor: Analyst: C MEEKAN

Percent Moisture (decanted):

Associated Blank: 910103-263

QA File Number: NA

[]: Result has been Corrected for Spike

CAS		ug/Kg	C).		ug/Kg
108-95-2	Phenol	50000	106-47-8	4-Chloroaniline	5000U
111-44-4	bis(2-Chloroethyl)ether	5000U	87-68-3	Hexachlorobutadiene	50000
95-57-8	2-Chlorophenol	50000	59-50-7	4-Chloro-3-methylphenol	50000
541-73-1	1.3-Dichlorobensene	5000U	91-57-6	2-Methylnaphthalene	35000
106-46-7	1.4-Dichlorobensene	5000U	77-47-4	Hexachlorocyclopentadiene	50000
100-51-6	Bensyl Alcohol	5000U	88-06-2	2,4,6-Trichlorophenol	5000 U
95-50-1	1.2-Dichlorobensene	5000U	95-95-4	2,4,5-Trichlorophenol	24000U
95-48-7	2-Methylphenol	5000U	91-58-7	2-Chloronaphthalene	50000
108-60-1	bis(2-Chloroisopropyl)ether	5000U	88-74-4	2-Witroaniline	240000
106-44-5	4-Methylphenol	5000U	131-11-3	Dimethylphthalate	50000
621-64-7		50000	20 8-9 6-8	Acenaphthylene	50000
67-72-1	Hexachloroethane	5000U	9 9- 09-2	3-Witroaniline	240000
98-95-3	Nitrobensene	50000	83-32-9	Acenaphthene	2000 J
78-59-1	Isophorone	50000	51-28-5	2,4-Dinitrophenol	240000
88-75-5	2-Nitrophenol	5000U	100-02-7	4-Mitrophenol	240000
105-67-9	2.4-Dimethylphenol	5000U	132-64-9	Dibensofuran	50000
65-85-0	Bensoic Acid	24000U	121-14-2	2,4-Dinitrotoluene	50000
111-91-1	bis(2-Chloroethoxy)methane	5000U	606-20-2	2,6-Dinitrotoluene	50000
120-83-2	• • • • • • • • • • • • • • • • • • • •	5000U	84-66-2	Diethylphthalate	50000
120-82-1	1.2.4-Trichlorobensene	50000	7005-72-3	4-Chlorophenyl-phenylether	50000
91-20-3	-,-,-	5000U	86-73-7	Fluorene	940 J

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

52

Analis ID: 901226-057 Laboratory: Organic Mass Spectroscopy Laboratory Customer Sample ID: 27-105

Customer: KESSNER/ROOS

File ID: 10935

Sample Matrix: SOIL

Requisition Number:

Instrument ID: 5970-3 Authorised By: D. C. Canada

Date Sample Received: 20-DEC-1990

BEA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAM-1991

Date Analysed: 14-JAM-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Mumber: BKA (CLP) NDP

Percent Moisture:

Dilution Pactor:

Percent Moisture (decanted):

Analyst: C MEEKAN

QA File Number: NA

Associated Blank: 910103-263

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/Kg
100-01-6	4-Mitroeniline	24000U	53-70-3	Dibens(a,h)anthracene	1900 J
534-52-1	4,6-Dinitro-2-methylphenol	24000U	191-24-2	Benzo(g,h,i)perylene	5000U
86-30-6	N-Mitrosodiphenylamine	5000U			
101-55-3	4-Bromophenyl-phenylether	5000U			
118-74-1	Hexachlorobensene	5000U			
87-86-5	Pentachlorophenol	24000U			
85-01-8	Phenenthrene	9600			
120-12-7	Anthracene	2300 J			
84-74-2	Di-n-butylphthalate	3000 JB			
206-44-0	Fluoranthene	18000			
129-00-0	Pyrene	18000			•
85-68-7	Butylbensylphthelate	5000U			
91-94-1	3,3'-Dichlorobenzidine	100000			
56-55-3	Benso(a)anthracene	12000			
117-81-7	bis(2-Sthylhexyl)phthalate	5000U			
218-01-9	Chrysene	15000			
117-84-0	Di-n-octylphthalate	5000U			
205-99-2	Benso(b)fluoranthene	12000			
207-08-9	Benso(k)fluoranthene	4400 J			
50-32-8	Benso(a)pyrene	10000			
193-39-5		1200 J			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site Analytical Chemistry Department

TENTATIVELY IDENTIFIED COMPOUNDS

BEGA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS

Analis ID: 901226-057	Customer Sample ID: 27-105
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: KESSNER/ROOS
Sample Matrix: SOIL	Pile ID: 10935
Level: (low/med): LOW	Date Received: 20-DEC-1990
Dilution Factor: 5.0	Date Analysed: 14-JAH-1991
Noisture: not dec. 7.5 dec.	Date Extracted: 3-JAN-1991
Extraction: (SepF/Cont/Sonc) Souli	

GPC Cleanup: (Y/W) H

Number TICs found: 21

Concentration Units (ug/L or ug/Kg): ug/Kg

CAS MURBER	CONGROUND NAME	XT	EST. CONC.	0
·	OCTANE, 2, 2, 6-TRIMETHYL-	0.23	75000	
. 526-73-0	1,2,3-Trimethylbensene	8.43	74000	J
•	BENSEME, 1-STRYL-METRYL	8.59	27000	JY
•	UNIQUENT SATURATED HYDROCARBON	8.82	28000	J
•	UNDOORN SATURATED HYDROCARBON	9.65	61000	3
•	URBINORI ARCHATIC HYDROCARBON	10.04	140000	J
•	TRECEIVE	10.16	70000	J
•	UNICHONE SATURATED HYDROCARBON	10.23	32000	J
•	BENERIE, -DIETHYL	10.47	52000	J.Y
•	URREICHRI	10.65	53000	J
•	UNICHONE ABONATIC HYDROCARBON	10.92	10000	J
	UNGCOOR SATURATED HYDROCARBOR	11.23	29000	J
•	Utilitioner	11.51	9800	J
	VANGEDORY	11.59	17000	J
	UNROUSE ARCHATIC HYDROCARBON	11.80	27000]]
	UNISHONE ARCHATIC HYDROCARBON	11.90	18000	J
·	URIGIONS ARONATIC HYDROCARBON	12.00	13000	J
	BENKEME, -DIMETHYL-METHYLETHYL	12.51	19000	1X
٠	UNECHONE ARCHATIC HYDROCARBON	13.09	7900	J
٠	1H-INDENE, 2, 3-DIHYDRO-DIMETHYL	13.37	10000	1 JY
	URISONRY	14.39	14000	J
·	<u> </u>	<u>L</u>		<u> </u>
·	1	<u> </u>	l	<u> </u>
١٠	<u> </u>	<u> </u>	L	<u> </u>
·	<u> </u>	1	L	<u> </u>
s		1	<u> </u>	<u> </u>
7	1	<u> </u>	L	<u> </u>
٠	1	1	<u> </u>	<u> </u>
)	<u> </u>	<u> </u>	<u> </u>	<u> </u>

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

55

Analis ID: 901226-057

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: 27-105 Customer: KESSHER/ROOS

File ID: >07778

Authorised By: D. C. Canada

Instrument ID: 70-2

Sample Matrix: SOIL

Requisition Number:

Date Sample Received: 20-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analysed: 31-DEC-1990

Preparation Procedure Rumber: Percent Moisture: Analysis Procedure Number: VOA (CLP) HDP

Dilution Factor: 100.0

Percent Moisture (decented):

Analyst: LM POTTER

QA File Number: NA

Associated Blank: 901231-001

[]: Result has been Corrected for Spike

CAS		uq/Kq	CAS		ug/Kg
74-67-3	Chloromethane	1300U	79-00-5	1,1,2-Trichloroethane	6300
74-83-9	Bronnethene	1300U	71-43-2	Bensene	630U
75-01-4		1300U	10061-02-6	trans-1,3-Dichloropropene	63 0 U
75-00-3	Chlorosthane	1300U	75-25-2	Bromoform	630U
75-09-2		260 ЛВ	108-10-1	4-Methyl-2-pentanone	1300U
	Acetone	1300U	591-78-6	2 -He xanone	10000
75-15-0		630U	127-18-4	Tetrachloroethene	630U
	1.1-Dichloroethene	630U	79-34-5	1,1,2,2-Tetrachloroethane	630U
	1.1-Dichloroethane	630U	108-88-3	Toluene	630U
	1,2-Dichloroethene (total)	630U	108-90-7	Chlorobenzene	630U
67 -66- 3	-•-	630U	100-41-4	Ethylbensene	6300
• • • • •	1.2-Dichloroothane	630U	100-42-5	Styrene	630U
78-93-3		1300U	1330-20-7	Xylene (total)	17000
	1.1.1-Trichloroethane	630U		_	
	Carbon Tetrachloride	630U			
	Vinyl Acetate	1300U			
75-27-4		630U			
	1.2-Dichloropropane	630U			
	cis-1.3-Dichloropropens	630U			
	Trichloroethene	630U			
	Dibromochloromethane	630U			

U - Compound was analysed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 oak Ridge K-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Analis ID: 901226-057	Customer Sample ID: 27-105
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: KESSNER/ROOS
Sample Matrix: SOIL	File ID: >07778
Level: (low/med): LOM	Date Received: 20-DEC-1990
Dilution Factor: 100.0	Date Analysed: 31-DEC-1990
* Moisture: not dec.	general webien Melko

Number TICs found: _6

Concentration Units
(ug/L or ug/Kg): ug/Kg

CAS MAGER	CONGROUND HAVE	1 27 1	EST. CONC.	Q
•	2,4-DIMETHYL HEXANE	13.14		ŗ
•	2,3,4 TRIMETHYL PENTANE	13.75	3500	J
•	3-METHYL HEPTANE	14.57	960	J
	UNIQUONN HYDROCARBON	17.57	1400	3
	UNIQUONN HYDROCARBON	21.31	12000	J
	UNINCOM	16.55	36000]]
·	<u> </u>			<u>!</u>
)			<u> </u>	<u> </u>
·	1		<u> </u>	
	<u> </u>			<u> </u>
· ·	1		<u></u>	<u> </u>
·	<u> </u>		<u> </u>	
)			<u> </u>	!
١			<u> </u>	
۶			<u> </u>	<u> </u>
s				<u> </u>
7			<u> </u>	
)				
)			<u> </u>	
o			<u> </u>	
1				
2			<u> </u>	<u>.</u>
3			<u> </u>	
4			<u> </u>	
5			<u> </u>	
6			<u> </u>	<u> </u>
7			<u> </u>	
8. <u></u>			<u> </u>	
9			<u> </u>	

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

WHC-SD-EN-TI-136, Rev. 0 Oak Ridge K-25 Site

Analytical Chemistry Department Results of Analyses

Analis ID: 901226-058

Project: G132 0275

Customer Sample ID: 27-106

Customer: KESSHER/ROOS

Requisition Number:

Date Sampled: 18-DEC-1990

Date Sample Received: 20-DEC-1990

Sampled By:

Date Sample Completed: 27-JAN-1991

Material Description: SOIL

[]: Result has been Corrected for Spike

Activ. Number	Procedure No.	Analysis	Result	Units	Analyst	QA File Number	Date Completed
102003	EPA-3050	Lood	4.2	ug/g	P BUCKLEY	10123H	27-JAN-1991
132803		Prep (BBD- SM-846-5ox)	c		JE KREIS	1993	4-Jan-1991

Prop (BRA- SM-846-Sox)

Analyst

- JH KREIS

Date Extracted

= 3-JAM-1991

Sample Weight Extracted (g) = 10.90

Percent Solids

Calculated Dried Weight (g) = 9.97

Extraction Method

- Soxhlet

Extraction Solvent

= Methlylene Chloride/Acetone

Extraction Cleanup

= Sodium Sulfate

Final Volume of Extract (mL) = 1

Associated Blank

= 910103-263

Program Manager: D. L. Amburgey Date Approved: 7-FEB-1991

5

Analis ID: 901226-058

Customer Sample ID: 27-106

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >10936

Sample Matrix: SOIL

Instrument ID: 5970-3 Authorized By: D. C. Canada Requisition Number:

Date Sample Received: 20-DEC-1990

BNA - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAM-1991

Date Analysed: 14-JAM-1991

Preparation Procedure Mumber: EPA-3550

Analysis Procedure Number: SNA (CLP) MDP

Percent Moisture:

Dilution Factor: 1.0

Analyst: C MEEHAN

Percent Moisture (decented):

QA File Mumber: NA

Associated Blank: 910103-263

[]: Result has been Corrected for Spike

CAS		ug/Kg	O.S		ug/Kg
108-95-2	Phonol	9400	106-47-8	4-Chloroeniline	9800
	bis(2-Chloroethyl)ether	9800	17-68-3	Hexachlorobutadiene	9800
111-44-4 95-57-8		9800	59-50-7	4-Chloro-3-methylphenol	9800
••••	2-Chlorophenol 1.3-Dichlorobensene	9800	91-57-6	2-Methylnaphthalene	980U
541-73-1		9400	77-47-4		9800
106-46-7	1,4-Dichlorobensene	9800	# 8-06- 2	· · · · · · · · · · · · · · · · · · ·	9800
100-51-6	Beasyl Alcohol	9800	95-95-4	2,4,5-Trichlorophenol	4900U
95-50-1	1,2-Dichlorobensene	9800	91-58-7	2-Chloronaphthalene	9800
95-48-7	2-Methylphenol	9800	88-74-4	2-Mitroaniline	4900U
108-60-1	bis(2-Chloroisopropyl)ether	,,,,,	131-11-3		9800
106-44-5	4-Methylphenol	980U			9800
621-64-7	M-Mitroso-di-n-propylamine	9800		Acenaphthylene	49000
67-72-1	Hexachloroethane	980U	99- 09-2	•	9800
9 895- 3	Mitrobensone	9800	83–32–9	Acenaphthene	4900U
78-59-1	Isophorone	9800	51-28-5	2,4-Dinitrophenol	••••
88-75-5	2-Witrophenol	9800	100-02-7	4-Mitrophenol	4900U
105-67-9	2,4-Dimethylphenol	9800	132-64-9	Dibensofuran	9800
65-85-0	Benseic Acid	140 J	121-14-2	2,4-Dinitrotoluene	9800
111-91-1	bis(2-Chloroethoxy)methane	9800	606-20-2	2,6-Dinitrotoluene	9800
120-83-2	2.4-Dichlorophenol	9800	84-66-2	Diethylphthalate	170 JB
120-63-1	1.2.4-Trichlorobensene	9800	7005 -72-3	4-Chlorophenyl-phenylether	9800
91-20-3	Naphthalene	980U	86-73-7	Pluorene	9800

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.

AnaLIS ID: 901226-058

Laboratory: Organic Mass Spectroscopy Laboratory

Customer: KESSNER/ROOS

File ID: >10936

Sample Matrix: SOIL

Customer Sample ID: 27-106

Instrument ID: 5970-3

Requisition Number:

Authorized By: D. C. Canada

Date Sample Received: 20-DEC-1990

BER - Base/Neutral/Acid Compounds (TCL)

Date Extracted/Prepared: 3-JAM-1991

Date Analysed: 14-JAM-1991

Preparation Procedure Number: EPA-3550

Analysis Procedure Humber: BKGA (CLF) NDF

Percent Hoisture: 8.5

Dilution Factor: 1.0

Percent Moisture (decented):

Analyst: C MEERAN

Associated Blank: 910103-263

QA File Number: NA

WESCHELOG STERM. MAINT-102

[]: Result has been Corrected for Spike

CAS		ug/Kg	CAS		ug/kg
100-01-6	4-Mitrosniline	4900U	53-70-3	Dibens(a,h)anthracene	9800
534-52-1	4,6-Dinitro-2-methylphenol	4900U	191-24-2	Benso(q,h,i)perylene	9800
86-30-6	W-Witrosodiphenylamine	9800			
101-55-3	4-Bromophenyl-phonylether	9800			
118-74-1	Hexachlorobensene	9800			
87-86-5	Pentachlorophenol	4900U			
85-01-8	Phonenthrone	9800			
120-12-7	Anthracene	9800			
84-74-2	Di-n-butylphthalate	3700 B			
206-44-0	Fluoranthene	980U			
129-00-0	Pyrene	9800			
85-68-7	Butylbensylphthelate	9800			
91-94-1	3,3'-Dichlorobensidine	20000			
56-55-3	Senso(a)anthracene	9800			
117-81-7	bis(2-Ethylhexyl)phthalate	410 JB			
218-01-9	Chrysene	9800			
117-84-0	Di-n-octylphthalate	9800			
205-99-2	Benso(b)fluoranthene	9800			
207-08-9	Benso(k)fluoranthene	9600			
50-32-8	Benso(a)pyrene	9800			
193-39-5	Indeno(1,2,3-cd)pyrene	980U			

U - Compound was analysed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the reagent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

 $[\]lambda$ - Aldel condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

- Probable Identification.
- Exceeds initial calibration range.
- Secondary dilution.
- Aldol condensation product.
- 3 Not detected.
 - Analyte was found in the reagent blank as well as the sample. Indicates an estimated value.
- Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

Data Reporting Qualifiers:

9	CA MAGES	CONTROLL MANS	ä	EST. COMC.	٩
۲	123-42-3	123-43-2 2-Pentanone, 4-hydroxy-4-methy	5.79	9700	JEV.
۰.			14.84	1100	3
۳,		UEDUCHEY	15.17	410	3
٠,		UNDERVIORE SATURATED HYDROCARDON	15.35	750	ង
۳,		9H-FUORINE, -HETHYL	16.31	610	អ
٠,			16.96	690	ង
٠,	17851-53-51	17851-53-5 1,2-Bensenedicarboxylic acid,b	21.17	730	9
٠,	•	CERCIONER	21.48	1200	-
۰	_	UBDIONE SATURATED HYDROCARDON	21.50	590	ង
; ;			22.83	680	ង
۴,	_	HEPTADECANE, 2, 6, 10, 15-TETANET	23.61	1100	ង
֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡		UNDERSTANDED HYDROCARDON	25.48	780	3
۳,		OCINDECNIE, 5,14-DIBUTIL-	26.36	700	2
;		MACATRE	32.77	1200	2
5					
5					
17.					
F					
19.	•				
20					
21.					
22.					
23.					
24					
2					
2		1			
27.					
2					
29.					
_ ĕ					

(nd/r or nd/kg): nd/kg Concentration Units

ber TICs found: 14

A Moisture: not dec. are cleamp: Extraction: (Sep?/Cont/Sonc) E (8/1)

Date Received: 20-DEC-1990
Date Analysed: 14-JAN-1991
Date Extracted: 3-JAN-1991 File ID: >10936 Customer: KESSNEN/ROOS

bilution Factor: Analis ID: 901226-058
Laboratory: Organic Mass Spectroscopy Laboratory
Sample Matrix: 903L
Level: (low/med): LOM

Customer Sample ID: 27-106

MAN (TCL) SOIL CHANTICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

١

WHC-SD-EN-TI-136, Rev. 0 oak sldge K-25 Site Analytical Chemistry Department

Page 1 of 1

Analis ID: 901226-058

Laboratory: Organic Mass Spectroscopy Laboratory

Customer Sample ID: 27-106

Customer: KESSMER/ROOS

File ID: >07779

Authorised By: D. C. Canada

Sample Matrix: SOIL

Instrument ID: 70-2

Requisition Number:

Date Sample Received: 20-DEC-1990

VOA - Volatile Organic Compounds (TCL)

Date Extracted/Prepared:

Date Analyzed: 31-DEC-1990

Preparation Procedure Number:

Analysis Procedure Number: VOA (CLP) HDP

Percent Moisture:

Dilution Factor: Analyst: LM POTTER

Percent Moisture (decanted):

QA File Number: NA

Associated Blank: 901231-001

[] : Result has been Corrected for Spike

O.S		ug/Kg	CAS		0q/Kq
74-47-3	Chloromethane	130	79-00-5	1,1,2-Trichloroethane	6 U
74-63-9	Bronomethane	130	71-43-2	Benzene	eu .
	Vinyl Chloride	130	10061-02-6	trans-1,3-Dichloropropens	€U
	Chleroethane	130	75-25-2	Bromoform	6 U
	Methylene Chloride	260 JB	108-10-1	4-Methyl-2-pentanone	130
67-64-1	•	130	591-78-6	2-Hexanone	130
	Carbon Disulfide	60	127-18-4	Tetrachioroethene	ស
	1,1-Dichloroethene	60	79-34-5	1,1,2,2-Tetrachloroethane	60
	1.1-Dichloroethane	60	108-88-3	Toluene	60
	1,2-Dichloroethene (total)	6 U	108-90-7	Chlorobensene	€U
	Chleroform	6U	100-41-4	Ethylbensene	€U
	1.2-Dichloroethane	6 U	100-42-5	Styrene	eu .
78-93-3	2-Butanone	130	1330-20-7	Eylene (total)	6 U
71-55-6	1,1,1-Trichloroethane	6U			
	Carbon Tetrachloride	€U			
	Vigwi Acetate	130			
	Bromodichloromethane	60			
78-87-5	1.2-Dichloropropene	60			
1006101-5	cis-1,3-Dichloropropene	60			
	Trichloroethene	6 U			
	Dibromochloromethane	6U			

U - Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.

B - Analyte was found in the respent blank as well as the sample.

J - Indicates an estimated value.

ND - Not detected.

A - Aldol condensation product.

D - Secondary dilution.

E - Exceeds initial calibration range.

WHC-SD-EN-TI-136, Rev. 0 oak Ridge R-25 Site Analytical Chemistry Department

VOA (TCL) SOIL ORGANICS ANALYSIS DATA SHEETS TENTATIVELY IDENTIFIED COMPOUNDS

Anelis ID: 901226-058	Customer Sample ID: 27-106
Laboratory: Organic Mass Spectroscopy Laboratory	Customer: KESSNER/ROOS
Sample Matrix: SOIL	File ID: >07779
Level: (low/med): LOW	Date Received: 20-DEC-1990
Dilution Factor: 1.0	Date Analyzed: 31-DEC-1990
t Moisture: not dec.	
	Concentration Units
Number TICs found: 4	(ug/L or ug/kg): ug/kg

CAS NUMBER	COMPOUND NAME	1 27	EST. CONC.	9
•	LEGGIONES	15.36		•
·	UNIQUOR	1 17.96		J
•	URROWN	16.22	64000	J
•	URBOICHET	18.77	140000	J
				L
•	1		l	
•	1			<u></u>
	1		1	<u> </u>
			L	L
•			<u> </u>	
•	1		<u> </u>	<u> </u>
			L	<u> </u>
			<u> </u>	<u> </u>
			<u> </u>	<u></u>
J	1		<u></u>	
i				<u> </u>
·. <u></u>	1	1	<u> </u>	1
١				<u> </u>
)			<u> </u>	
)		1	<u></u>	
٠			<u> </u>	<u> </u>
2			<u> </u>	ــــــــــــــــــــــــــــــــــــــ
3			1	
٠	<u>, I</u>		1	
5	<u></u>		<u> </u>	<u> </u>
6				<u> </u>
7		1	<u> </u>	
٠				<u> </u>
9				

- U Compound was analyzed for but not detected. The number is the attainable detection limit for the sample.
- B Analyte was found in the reagent blank as well as the sample.
- J Indicates an estimated value.
- ND Not detected.
- A Aldol condensation product.
- D Secondary dilution.
- E Exceeds initial calibration range.
- P Probable Identification.

TANK 100-N-SS-28
Sample Dates July 16, 1991 and July 17, 1991

ANALYTICAL REPORT

Form ARF-AL

Agency Identification Number \$91-0513-CD

Page 1 of 2 Part 1 of 1

AMENDED

20-93

					Account	No3	1534C	<u> </u>			
2355 Stev MSIN H4-2 Richland.	ouse Hanfor eens Drive 3 345 Hill WA 99352 1: Briana C	Street	_	8 8			Te	FAX lephone	(509) (509)	372-210 373-322	6 5
Sampling (Collection Sampling	and Shi Site 10	pment ON-SS-2	8		ate of	Collect	ion <u>Jul</u>	y 16. 1	1991	
	Date Sam	ples Rec	eived a	t Labor	لد atory	<u>11y 19,</u>	1991				
Analysis Analytica	Method of Date(s)				991						
Analytica							T				1
			TPH-Diesel mg/q								
BOOZP2	EX 2405	\$0IL	0.20				ļ			<u> </u>	╄
300273	EX 2606	SOIL	11.		<u> </u>	<u> </u>				 	╁
800274	EX 2607	SOIL	10.								${\mathsf T}$
B00276	EX 2609	SOIL	0.05		-		 				T
BOOZN6 BOOZN7	EE 2612	SOIL	0.24		 		+				
BOOSN7 DUP	EX 2613	SOIL	0.16								
BOOSFO	BK 2614	SOIL	ED*								↓_
BOOZP1	BE 2615	SOIL	2.8								
	Stream P										1
	ļ	_		[╁╌
l	l .	1	I	1	i	1	_L	<u>i</u>			

See comment on last page. ND Parameter not detected. NR Parameter net requested. 22 See comment on last page.
() Farameter between LOD and Log.

Reviewer: Dan-Bruch

Laboratory Supervisor:

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 / (801) 266-7700 A Sorenson Company

WHC-SD-EN-TI-136, Rev 0

ANALYTICAL REPORT

AMENDED

Form ARF-C Page 2 of 2

Date			_
Agency	Identification	Number S91-0513-CD	

General Set Comments

The control spike had 63 % recovery.

ANALYTICAL REPORT FOR SAMPLE No. EK2611 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZN6</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KM90EK2611</u> Date of Analysis <u>07/26/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

Cas. No	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
74-87-3	chloromethane	Ū	1.6*
74-83-9	bromomethane	U	1.5*
75-01-4	vinyl chloride	Ü	1.7*
75-00-3	chloroethane	U	1.4*
75-09-2	methylene chloride	U	1.6*
67-64-1	acetone	U	4.3*
75-15-0	carbon disulfide	Ü .	1.6*
75-69-4	trichlorofluoromethane	Ü	1.5*
75-35-4	1,1-dichloroethene	U	1.2*
75-34-3	1,1-dichloroethane	U	2.1*
540-59-0	total 1,2-dichloroethene	U	1.2*
76-66-3	chloroform	U	1.8*
107-06-2	1,2-dichloroethane	U	2.4*
74-88-4	iodomethane	U	1.5*
107-02-8	acrolein	U	58.*
107-13-1	acrylonitrile	U	43.*
78-93-3	2-butanone	<u> </u>	3.8*
71-55-6	1,1,1-trichloroethane	U	1.6*
56-23-5	carbon tetrachloride	U	1.5*
108-05-4	vinyl acetate	<u> </u>	3.5*
75-27-4	bromodichloromethane	U	1.8*
78-87-5	1,2-dichloropropane	<u>U</u>	2.0*
10061-02-5	cis-1,3-dichloropropene		3.1*
79-01-6	' trichloroethene	<u>U</u>	1.3*
71-43-2	benzene	<u>U</u>	1.6*
124-48-1	dibromochloromethane	<u> </u>	1.4* 1.1*
79-00-5	1,1,2-trichloroethane	U	2.9*
10061-02-6	trans-1,3-dichloropropene	U	3.3*
110-75-8	2-chloroethylvinyl ether bromoform	U	1.2*
75-25-2 74-95-3	dibromomethane	U	2.5*
	trans-1,4-dichloro-2-butene	U	1.7*
108-10-1	4-methyl-2-pentanone	U	3.5*
96-18-4	1,2,3-trichloropropane	U	2.3*
591-78-6	2-hexanone	U	4.1*
79-34-5	1,1,2,2-tetrachloroethane	Ü	2.0*
127-18-4	tetrachloroethene	U	1.5*
97-63-2	ethyl methacrylate	U	1.9*
108-88-3	toluene	U	1.5*
108-90-7	chlorobenzene	Ü	1.3*
100-41-4	ethylbenzene	U	1.4*
100-42-5	styrene	U	1.2*
1330-20-7	total xylene	U	1.0*
	D 000		

* current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2611

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	le ID <u>B00ZN6</u>		
		Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
	NO UNKNOWNS FOUND		
			
			
	•		

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2612 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZN7</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KM99EK2612</u> Date of Analysis <u>07/27/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

	<u> </u>		
		RESULTS	DETECTION LIMITS
Cas. No	COMPOUND	(ug/KG)	(ug/KG)
		_	
74-87-3	chloromethane	<u> </u>	3.2*
74-83-9	bromomethane	<u>U</u>	3.0*
75-01-4	vinyl chloride	<u> </u>	3.4*
75-00-3	chloroethane	<u></u>	2.8*
75-09-2 67-64-1	methylene chloride	<u>U</u>	3.2*
75-15-0	acetone	7.6	8.6*
75-69-4	carbon disulfide trichlorofluoromethane	U	3.2* 3.0*
75-35-4	1,1-dichloroethene	U	
75-34-3	1,1-dichloroethane	U	2.4* 4.2*
540-59-0	total 1,2-dichloroethene	U	2.4*
76-66-3	chloroform	U	3.8*
107-06-2	1,2-dichloroethane	U	4.8*
74-88-4	iodomethane	Ü	3.0*
107-02-8	acrolein	U	116.*
107-13-1	acrylonitrile	U	86.*
78-93-3	2-butanone	U	7.6*
71-55-6	1,1,1-trichloroethane	<u> </u>	3.2*
56-23-5	carbon tetrachloride	U	3.0*
108-05-4	vinyl acetate	U	7.0*
75-27-4	bromodichloromethane	U	3.6*
78-87-5	1,2-dichloropropane	U	4.0*
10061-02-5	cis-1,3-dichloropropene	U	6.2*
79-01-6	trichloroethene	U	2.6*
71-43-2	benzene	U	3.2*
124-48-1	dibromochloromethane	U	2.8*
79-00-5	1,1,2-trichloroethane	U	2.2*
10061-02-6	trans-1,3-dichloropropene	U	5.8*
110-75-8	2-chloroethylvinyl ether	<u> </u>	6.6*
75-25-2	bromoform	U	2.4*
74-95-3	dibromomethane	U	5.0*
	rans-1,4-dichloro-2-butene	<u> </u>	3.4*
108-10-1	4-methyl-2-pentanone	U	7.0*
96-18-4	1,2,3-trichloropropane	U	4.6*
591-78-6	2-hexanone	U	8.2*
79-34-5	1,1,2,2-tetrachloroethane	U	4.0*
127-18-4	tetrachloroethene	U	3.0*
97-63-2	ethyl methacrylate	<u>U</u>	3.8*
108-88-3	toluene	<u> </u>	3.0*
108-90-7	chlorobenzene	<u> </u>	2.6*
100-41-4	ethylbenzene	U	2.8*
100-42-5	styrene	U	2.4*
1330-20-7	total xylene	1000.	2.0*
	B 444		

* current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2612

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	ole ID B00ZN7		
_		Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
	C8 hydrocarbon trimethylhexane isomer C9 hydrocarbon C9 hydrocarbon C9 cyclic hydrocarbon unknown unsat. hydrocarbon unknown cyclic hydrocarbon C9 hydrocarbon C9 hydrocarbon unknown branched alkane	466 480 483 495 497 510 521 549 557 566	110. ENW 370. ENWK 200. ENW 400. ENW 400. ENW 440. EWN 380. EWN 170. EWN 830. EWN 2800. EWN

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2614 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP0</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KM89EK2614</u> Date of Analysis <u>07/26/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

	•		
0		RESULTS	DETECTION LIMITS
<u>Cas. No</u>	COMPOUND	(ug/KG)	(ug/KG)
24 02 0			
74-87-3	chloromethane	U	1.6*
74-83-9	bromomethane	U	1.5*
75-01-4	vinyl chloride	U	1.7*
75-00-3	chloroethane	U	1.4*
75-09-2	methylene chloride	U	1.6*
67-64-1	acetone	U	4.3*
75-15-0	carbon disulfide	U	1.6*
75-69-4	trichlorofluoromethane	U	1.5*
75-35-4	1,1-dichloroethene	U	1.2*
75-34-3	1,1-dichloroethane	U	2.1*
540-59-0	total 1,2-dichloroethene	U	1.2*
76-66-3	chloroform	U	1.8*
107-06-2	1,2-dichloroethane	U	2.4*
74-88-4	iodomethane	Ü	1.5*
107-02-8	acrolein	U	58.*
107-13-1	acrylonitrile	Ü	43.*
78-93-3	2-butanone	<u> </u>	
71-55-6	1,1,1-trichloroethane	U	3.8*
56-23-5	carbon tetrachloride		1.6*
108-05-4	vinyl acetate	<u>U</u>	1.5*
75-27-4	bromodichloromethane	<u>U</u>	3.5*
78-87-5		<u> </u>	1.8*
10061-02-5	1,2-dichloropropane	<u>U</u>	2.0*
79-01-6	cis-1,3-dichloropropene	<u> </u>	3.1*
71-43-2	/ trichloroethene	<u>U</u>	1.3*
124-48-1	benzene	<u>U</u>	1.6*
79-00-5	dibromochloromethane	<u>U</u>	1.4*
10061-02-6	1,1,2-trichloroethane	<u>U</u>	1.1*
	trans-1,3-dichloropropene	U	2.9*
110-75-8	2-chloroethylvinyl ether	U	3.3*
75-25-2	bromoform	U	1.2*
74-95-3	dibromomethane	U	2.5*
764-41-0	trans-1,4-dichloro-2-butene	<u> </u>	1.7*
108-10-1	4-methyl-2-pentanone	<u> </u>	3.5*
96-18-4	1,2,3-trichloropropane	U	2.3*
591-78-6	2-hexanone	U	4.1*
79-34-5	1,1,2,2-tetrachloroethane	U	2.0*
127-18-4	tetrachloroethene	U	1.5*
97-63-2	ethyl methacrylate	U	1.9*
108-88-3	toluene	U	1.5*
108-90-7	chlorobenzene	U	1.3*
100-41-4	ethylbenzene	U	1.4*
100-42-5	styrene	U	1.2*
1330-20-7	total xylene	U	1.0*
 ,	D-233		1.0"
* *****	U-233		

^{*} current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2614

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	le ID B00ZP0		
_	•	Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
•			
	NO UNKNOWNS FOUND		

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2615 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP1</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KN17EK2615</u> Date of Analysis <u>07/27/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

		DECIII MC	DEMECHION ITMING
Cas. No	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
	<u> </u>		
74-87-3	chloromethane	<u>U</u>	4000.*
74-83-9	bromomethane	U	3800.*
75-01-4	vinyl chloride	<u> </u>	4300.*
75-00-3	chloroethane	U	3500.*
75-09-2	methylene chloride	U	4000.*
67-64-1	acetone	42000.	11000.*
75-15-0	carbon disulfide	<u>U</u>	4000.*
75-69-4	trichlorofluoromethane	<u> </u>	3800.*
75-35-4	1,1-dichloroethene		3000.*
75-34-3	1,1-dichloroethane	<u></u>	5300.*
540-59-0	total 1,2-dichloroethene	<u> </u>	3000.*
76-66-3	chloroform	<u> </u>	4500.*
107-06-2	1,2-dichloroethane	<u> </u>	6000.*
74-88-4	iodomethane	<u>U</u>	3800.*
107-02-8	acrolein	<u>U</u>	150000.*
107-13-1	acrylonitrile	U	110000.*
78-93-3	2-butanone	B	9500.*
71-55-6	1,1,1-trichloroethane	<u> </u>	4000.*
56-23-5	carbon tetrachloride	<u> </u>	3800.*
108-05-4	vinyl acetate	<u> </u>	8800.*
75-27-4	bromodichloromethane	<u>U</u>	4500.*
78-87-5	1,2-dichloropropane	<u> </u>	5000.*
10061-02-5		<u>U</u>	7800.*
79-01-6	, trichloroethene	<u>U</u>	3300.*
71-43-2	benzene	20000.	4000.*
124-48-1	dibromochloromethane	<u> </u>	3500.*
79-00-5	1,1,2-trichloroethane	<u>U</u>	2800.*
10061-02-6		<u>U</u>	7300.*
110-75-8	2-chloroethylvinyl ether	<u> </u>	8300.*
75-25-2	bromoform	<u>U</u>	3000.*
74-95-3	dibromomethane	<u>U</u>	6300.*
764-41-0	trans-1,4-dichloro-2-butene	<u>U</u>	4300.*
108-10-1	4-methyl-2-pentanone	<u> </u>	8800.*
96-18-4	1,2,3-trichloropropane		5800.*
591-78-6	2-hexanone	<u> </u>	10000.*
79-34-5	1,1,2,2-tetrachloroethane	<u> </u>	5000.*
127-18-4	tetrachloroethene	<u> </u>	3800.*
97-63-2	ethyl methacrylate	<u>U</u>	4800.*
108-88-3	toluene	350000.	3800.*
108-90-7	chlorobenzene	100000	3300.*
100-41-4	ethylbenzene	100000.	3500.*
100-42-5	styrene	1300000	3000.*
1330-20-7	total xylene n-235	1300000.	2500.*

* current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2615

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	ole ID B00ZP1	Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
565-59-3	2.3 dimethylpentane C7 hydrocarbon unknown branched alkane C8 hydrocarbon C8 hydrocarbon mixed spectra: C8 hydrocarbon &	354 378 399 428 440 450 451 465 474 497 550 556 567	1.7E5 ENW 1.7E5 ENW 4.7E5 ENW 1.0E5 ENW 7.6E4 ENW 8.4E4 EWN 1.0E5 EWNK 1.5E5 EWN 2.0E5 EWN 1.1E5 EWN 1.1E5 EWN 1.1E5 EWN 1.9E5 EWN 1.9E5 EWN

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2605 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP2</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KN10EK2605</u> Date of Analysis <u>07/27/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

Cas. No	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
74-87-3	chloromethane	U	4000.*
74-83-9	bromomethane	U	3800.*
75-01-4	vinyl chloride	U	4300.*
75-00-3	chloroethane	U	3500.*
75-09-2	methylene chloride	U	4000.*
67-64-1	acetone	U	11000.*
75-15-0	carbon disulfide	U	4000.*
75-69-4	trichlorofluoromethane	U	3800.*
75-35-4	1,1-dichloroethene	U	3000.*
75-34-3	1,1-dichloroethane	<u> </u>	5300.*
540-59-0	total 1,2-dichloroethene	<u> </u>	3000.*
76-66-3	chloroform	<u> </u>	4500.*
107-06-2	1,2-dichloroethane	<u>U</u>	6000.*
74-88-4	iodomethane	<u>U</u>	3800.*
107-02-8	acrolein	<u>U</u>	150000.*
107-13-1	acrylonitrile	<u> </u>	110000.*
78-93-3	2-butanone	B	9500.*
71-55-6 56-33-5	1,1,1-trichloroethane	<u>U</u>	4000.*
56-23-5 108-05-4	carbon tetrachloride	U	3800.*
75-27-4	vinyl acetate	U	8800.*
78-87-5	bromodichloromethane 1,2-dichloropropane	U	4500.* 5000.*
10061-02-5	cis-1,3-dichloropropene	U	7800.*
79-01-6	trichloroethene	U	3300.*
71-43-2	benzene	1800.	4000.*
124-48-1	dibromochloromethane	U	3500.*
79-00-5	1,1,2-trichloroethane	U	2800.*
10061-02-6	trans-1,3-dichloropropene	U	7300.*
110-75-8	2-chloroethylvinyl ether	U	8300.*
75-25-2	bromoform	U	3000.*
74-95-3	dibromomethane	U	6300.*
	trans-1,4-dichloro-2-butene	U	4300.*
108-10-1	4-methyl-2-pentanone	U	8800.*
96-18-4	1,2,3-trichloropropane	U	5800.*
591-78-6	2-hexanone	U	10000.*
79-34-5	1,1,2,2-tetrachloroethane	U	5000.*
127-18-4	tetrachloroethene	U	3800.*
97-63-2	ethyl methacrylate	U	4800.*
108-88-3	toluene	43000.	3800.*
108-90-7	chlorobenzene	U	3300.*
100-41-4	ethylbenzene	11000.	3500.*
100-42-5	styrene	U	3000.*
1330-20-7	total xylene	540000.	2500.*
	_ n_237		

^{*} current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2605

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	ole ID B00ZP2		
		Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
110-54-3 565-59-3	C5 cyclic hydrocarbon C6 cyclic hydrocarbon hexane 2,3-dimethylpentane C7 hydrocarbon unknown branched alkane C8 hydrocarbon C8 hydrocarbon C8 hydrocarbon C8 hydrocarbon	244 322 356 380 401 430 467	2.1E4 EWN 2.0E4 EWN 2.6E4 EWN 5.4E4 EWN 6.0E4 EWN 1.7E5 EWN 3.7E4 EWN 6.3E4 EWN 5.0E4 EWN
		~ <u> </u>	
			

B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.

- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2606 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP3</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KN13EK2606</u> Date of Analysis <u>07/27/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

Cas. No	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
74-87-3 74-83-9 75-01-4 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-69-4 75-35-4 75-34-3 540-59-0 76-66-3 107-06-2 74-88-4 107-02-8 107-13-1 78-93-3 71-55-6 56-23-5 108-05-4 75-27-4 78-87-5 10061-02-5 79-01-6 71-43-2 124-48-1 79-00-5 10061-02-6 110-75-8 75-25-2 74-95-3 764-41-0 108-10-1 96-18-4 591-78-6 79-34-5 127-18-4 97-63-2 108-88-3 108-90-7 100-42-5 1330-20-7	chloromethane bromomethane vinyl chloride chloroethane methylene chloride acetone carbon disulfide trichlorofluoromethane 1,1-dichloroethane 1,1-dichloroethane total 1,2-dichloroethane chloroform 1,2-dichloroethane iodomethane acrolein acrylonitrile 2-butanone 1,1,1-trichloroethane carbon tetrachloride vinyl acetate bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethane dibromochloromethane 1,1,2-trichloroethane	U U U U U U U U U U U U U U U U U U U	4000.* 3800.* 4300.* 3500.* 4000.* 11000.* 4000.* 3800.* 3000.* 5300.* 4500.* 4500.* 4500.* 4500.* 7800.* 5000.* 3800.* 3000.*
Cull	24440 4044442		

WHC-SD-EN-TI-136, Rev. 0 ANALYTICAL REPORT FOR SAMPLE No. EK2606

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	ole ID B00ZP3	Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
565-59-3	C7 cyclic hydrocarbon 2.3-dimethylpentane C7 hydrocarbon unknown branched alkane C9 oxy hydrocarbon unknown branched alkane C8 hydrocarbon unknown C8 hydrocarbon unknown branched alkane unknown branched alkane	338 355 379 400 429 466 475 480 498 557 568	8.6E4 EWN 5.9E4 EWN 8.6E4 EWN 2.9E5 EWN 8.4E4 EWN 1.5E5 EWN 1.0E5 EWN 5.2E4 EWN 1.5E5 EWN 2.7E5 EWN

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2607 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP4</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KN15EK2607</u> Date of Analysis <u>07/27/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

<u>Cas. No</u>	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
74-87-3	chloromethane	Ü	4000.*
74-83-9	bromomethane	U	3800.*
75-01-4	vinyl chloride	U	4300.*
75-00-3	chloroethane	U	3500.*
75-09-2	methylene chloride	Ü	4000.*
67-64-1	acetone	U	11000.*
75-15-0	carbon disulfide	U	4000.*
75-69-4	trichlorofluoromethane	U	3800.*
75-35-4	1,1-dichloroethene	U	3000.*
75-34-3	1,1-dichloroethane	U	5300.*
540-59-0	total 1,2-dichloroethene	U	3000.*
76-66-3	chloroform	<u>U</u>	4500.*
107-06-2	1,2-dichloroethane	<u> </u>	6000.*
74-88-4	iodomethane	<u>U</u>	3800.*
107-02-8	acrolein	<u> </u>	150000.*
107-13-1	acrylonitrile	<u> </u>	110000.*
78-93-3	2-butanone	B	9500.*
71-55-6	1,1,1-trichloroethane	<u> </u>	4000.*
56-23-5	carbon tetrachloride	<u>U</u>	3800.*
108-05-4	vinyl acetate	<u> </u>	8800.* 4500.*
75-27-4	bromodichloromethane	<u> </u>	5000.*
78-87-5	1,2-dichloropropane	U	7800.*
10061-02-5 79-01-6	cis-1,3-dichloropropene trichloroethene	<u>U</u>	3300.*
71-43-2	benzene	2700.	4000.*
124-48-1	dibromochloromethane	U	3500.*
79-00-5	1,1,2-trichloroethane	U	2800.*
10061-02-6		U	7300.*
110-75-8	2-chloroethylvinyl ether	U	8300.*
75-25-2	bromoform	U	3000.*
74-95-3	dibromomethane	U	6300.*
764-41-0	trans-1,4-dichloro-2-butene	U	4300.*
108-10-1	4-methyl-2-pentanone	U	8800.*
96-18-4	1,2,3-trichloropropane	U	5800.*
591-78-6	2-hexanone	U	10000.*
79-34-5	1,1,2,2-tetrachloroethane	<u> </u>	5000.*
127-18-4	tetrachloroethene	U	3800.*
97-63-2	ethyl methacrylate	U	4800.*
108-88-3	toluene	94000.	3800.*
108-90-7	chlorobenzene	U	3300.*
100-41-4	ethylbenzene	23000.	3500.*
100-42-5	styrene	U	3000.*
1330-20-7	total xylene	1600000.	2500.*

D-241 * current DataChem detection limit

WHC-SD-EN-TI-136, Rev. 0 ANALYTICAL REPORT FOR SAMPLE No. EK2607

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Samp	ole ID B00ZP4		
	Andrewson the state of the stat	Scan	Results
Cas. No	COMPOUND	Number	ug/KG Footnotes
			\$ i
	C7 hydrocarbon	378	8.8E4 EWN
	C8 hydrocarbon	400	3.5E5 EWN
	unknown oxy hydrocarbon	428	9.0E4 EWN
	C8 hydrocarbon	440	7.6E4 EWN
	mixed spectra: C8 hydrcarbon &	•	
	C3 subst benzne	450	7.2E4 EWN
	C8 hydrocarbon	465	1.6E5 EWN
	C8 hydrocarbon	474	1.3E5 EWN
	C8 hydrocarbon	497	1.1E5 EWN
	C9 hydrocarbon	548	6.8E4 EWN
	unknown branched alkane	556	2.5E5 EWN
	C9 hydrocarbon	567	2.9E5 EWN
		- 	
		-	
			
		•	
		-	
		• ——	
	,		
			
		-	

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

ANALYTICAL REPORT FOR SAMPLE No. EK2608 Page 1 of 2

EPA METHOD 8240

TARGET ANALYTE RESULTS

Field Sample ID <u>B00ZP5</u> Sponsor <u>WESTINGHOUSE HANFORD CO</u>
File ID <u>KM88EK2608</u> Date of Analysis <u>07/26/91</u> Date Received <u>07/19/91</u>
DataChem SET ID <u>S91-0513DD</u>

Cas. No	COMPOUND	RESULTS (ug/KG)	DETECTION LIMITS (ug/KG)
74-87-3	chloromethane	U	1.6*
74-83-9	bromomethane	U	1.5*
75-01-4	vinyl chloride	U	1.7*
75-00-3	chloroethane	U	1.4*
75-09-2	methylene chloride	U	1.6*
67-64-1	acetone	5.0	4.3*
75-15-0	carbon disulfide	U	1.6*
75-69-4	trichlorofluoromethane	Ü	1.5*
75-35-4	1,1-dichloroethene	Ü	1.2*
75-34-3	1,1-dichloroethane	Ü	2.1*
540-59-0	total 1,2-dichloroethene	Ü	1.2*
76-66-3	chloroform	U	1.8*
107-06-2	1,2-dichloroethane	U	2.4*
74-88-4	iodomethane	U	1.5*
107-02-8	acrolein	U	58.*
107-13-1	acrylonitrile	U	43.*
78-93-3	2-butanone	U	3.8*
71-55-6	1,1,1-trichloroethane	U	1.6*
56-23-5	carbon tetrachloride	<u> </u>	1.5*
108-05-4	vinyl acetate	U	3.5*
75-27-4	bromodichloromethane	U	1.8*
78-87-5	1,2-dichloropropane	U	2.0*
10061-02-5		U	3.1*
79-01-6	, trichloroethene	<u> </u>	1.3*
71-43-2	benzene	U	1.6*
124-48-1	dibromochloromethane	<u> </u>	1.4*
79-00-5	1,1,2-trichloroethane	<u> </u>	1.1*
10061-02-6		U	2.9*
110-75-8	2-chloroethylvinyl ether	U	3.3*
75-25-2	bromoform	U	1.2*
74-95-3	dibromomethane	<u> </u>	2.5*
764-41-0	trans-1,4-dichloro-2-butene	<u> </u>	1.7*
108-10-1	4-methyl-2-pentanone	<u> </u>	3.5*
96-18-4	1,2,3-trichloropropane	<u> </u>	2.3*
591-78-6	2-hexanone	<u> </u>	4.1*
79-34-5	1,1,2,2-tetrachloroethane	<u> </u>	2.0*
127-18-4	tetrachloroethene	<u>U</u>	1.5*
97-63-2	ethyl methacrylate	U	1.9*
108-88-3	toluene		1.5*
108-90-7	chlorobenzene	<u>U</u>	1.3*
100-41-4	ethylbenzene	<u>U</u>	1.4*
100-42-5	styrene	U	1.2*
1330-20-7	total xylene	U	1.0*

^{*} current DataChem detection limit

ANALYTICAL REPORT FOR SAMPLE No. EK2608

Page 2 of 2

NON-TARGET ANALYTE RESULTS Additional Volatiles

Field Sample	ID B00ZP5		_		
			Scan	Results	
Cas. No	COMPOUNI	<u>D</u>	Number	ug/KG Footnot	es
	NO UNKNOWNS FO	OUND			

		The second secon	AND THE RESERVE OF THE PARTY OF		
				· # = =	
	J		المناعث تتعن عناه		

FOOTNOTES

- B The analyte was found in the method blank. The reported results have been adjusted for the quantity found in the blank.
- E The reported concentration is an estimate only. The response factor was assumed to be 1.000 relative to an internal standard.
- J Indicates an estimated concentration below the Method Detection Limit.
- K The isomer is unknown.
- N Analytical standards were not analyzed for this compound.
- U Not detected.
- W The identification is tentative or closely related to the compound.

TANK 100-N-SS-28
Sample Date April 29, 1992

CASE NARRATIVE

LABORATORY: TMA/ARLI

CASE: 05-014

CONTRACT ID: WESTINGHOUSE HANFORD COMPANY

SDG RECEIPT DATE: MAY 4, 1992

1.0 DESCRIPTION OF CASE:

Three soil samples were analyzed for Total Petroleum Hydrocarbons and Purgeable Aromatics. Preliminary results were provided by FAX within 10 days of VTSR. This package represents the final results.

2.0 SAMPLE LIST:

WESTINGHOUS	E ID	LAB ID	MATRIX	METHOD
B06D35	A2	-05-014-01	SOIL	HC, THE
B06D36	A2	-05-014-02	SOIL	HC, THE, THP, BX
B06D37	A2	-05-014-03	SOIL	HC, THE, THP, BX

Method Codes: HC = EPA 418.1, THE = EPA 8015 EXTRACTABLE, THP = EPA 8015M PURGEABLE, BX = EPA 8020 BTEX

3.0 COMMENTS ON SAMPLE RECEIPT:

The samples were received intact and properly documented.

4.0 COMMENTS ON ANALYSIS:

4.1 EPA 418.1 - TOTAL PETROLEUM BY IR:

All samples were extracted and analyzed within method holding time.

All QC results were acceptable.

4.2 EPA 8015M - EXTRACTABLE HYDROCARBON:

All samples were extracted and analyzed within method holding time.

All QC results were acceptable.

Samples 806D36 and 806D37 contained a hydrocarbon mixture that has the chromatographic pattern of a combination of kerosene and diesel products. Each section of the chromatogram was quantitated against the appropriate standard separately.

Because of overlapping of late eluting gasoline compounds the MS and MSD were calculated by taking the sum of the area counts of five individual compounds and comparing this area to the sum of the area counts of the same peaks from the continuing calibration.

4.3 EPA 8015M - PURGEABLE HYDROCARBONS:

All samples were analyzed within method holding time. All QC results were acceptable.

Due to the high concentration of Kerosene range hydrocarbons in the samples, one gram was extracted with 10 mL of Methanol and 50 uL of Methanol purged. This resulted in a dilution factor of 1000:1. No gasoline range compounds were found in the samples. A Methanol Blank has been included in the package.

4.4 EPA 8020 - BTEX:

All samples were analyzed within method holding time.

All QC results were acceptable.

Due to the high concentration of background hydrocarbons the samples were extracted with Methanol (1:10) and 50 uL of Methanol purged. This resulted in a dilution factor of 1000:1. Results of a Methanol Blank have been included in the package.

All Toluene hits were confirmed by GCMS.

5.0 DATA PACKAGE COMMENTS:

The Format of the data deliverable was designed to meet or exceed the requirements of the Westinghouse Hanford Company Statement of Work. The intent of the package design is to provide sufficient data for "stand alone" validation. While the format of the package is "CLP like" Thermo Analytical Inc. makes no claim that this package duplicates in part or in total an EPA CLP data package.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Nicole Roth CLP Manager

Dennis D. Wells Technical Director THA Inc.

Received: 05/04/92

REPORT

Work Order # A2-05-014

Results by Sample

SAMPLE ID BO6036	SAMPLE # 02 FRACTIONS: F	
	Date & Time Collected 04/29/92	Category
418_181_200	•	-
mg/Kg		
SAMPLE ID 806D36 Duplicate	SAMPLE # 02 FRACTIONS: 6	
	Date & Time Collected 04/29/92	Category
418_181_330		
mg/Kg		
SAMPLE ID Blank Spike	SAMPLE # 02 FRACTIONS: H	
	Date & Time Collected 04/29/92	Category
418_1s		
mg/Kg		
SAMPLE ID BOGD37	SAMPLE # 03 FRACTIONS: E.F	
	Date & Time Collected 04/29/92	
418_181_160		
mg/Kg		

000023

THA Inc.

REPORT

Werk Order # A2-05-014

Received: 05/04/92

Results by Sample

SAMPLE ID BOODSS

FRACTION 01A TEST CODE 8015MS NAME EPA 8015M EXTRACT. (VR195)
Date & Time Collected 04/29/92 Category ______

MODIFIED 8015 - EXTRACTABLE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 05/11/92
Dilution factor: 1.00
Concentration Units: mg/Kg

Compound	Semple Result	PQL
Kerosene Range	ND	5
C10 - C16 Jet Fuel Range	ND	5
C9 - C22 Diesel Range	MD	10
Hydraulic Range	ND	5

ND * Not detected at the specified limits

form 1

000119

THA Inc.

REPORT

Work Order # A2-05-014

Received: 05/04/92

Results by Sample

SAMPLE 1D BO6D36 FRACTION O2C TEST CODE BTEX NAME BTEX by EPA 8020 (UN196)

Date & Time Collected 04/29/92 Category ______

BTEX by EPA Method 8020

Matrix: Soil

Date Analyzed: 5/8/92
Dilution factor: 1000

Concentration Units: _____ug/Kg

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	ND	500
108-88-3	Toluene	4,200	500
100-41-4	Ethylbenzene	ND	500
1330-20-7	Xylenes (Total)	ND	500

% Recovery Surrogate Compound

Bromofluorobenzene _____101

ND = Not detected at the specified limits

0000

THA Inc.

REPORT

Results by Sample

Received: 05/04/92
SAMPLE ID <u>806036</u>

FRACTION 028 TEST CODE 8015M NAME Volatile Fuels-TPM

Date & Time Collected 04/29/92 Category ______

MODIFIED 8015 - VOLATILE FUEL NYDROCARBONS

Matrix: Soil
Date Analyzed: 05/11/92
Dilution factor: 1000.00
Concentration Units: ug/Kg

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	ND	5000

ND = Not detected at the specified limits

000025

THA Inc.

REPORT

Work Order # A2-05-014

Received: 05/04/92

SAMPLE ID BOGD36

Results by Sample

FRACTION OZA TEST CODE BOISHS HAME EPA BOISH EXTRACT. (VM195)

Date & Time Collected 04/29/92 Category _____

MODIFIED 8015 - EXTRACTABLE FUEL NYDROCARBONS

Matrix: Soil

Date Analyzed: 05/12/92 Concentration Units: ___mg/Kg

Compound	Sample Result	PQL
Kerosene Range	2975	10
C10 - C16 Jet Fuel Range	ND	10
C9 - C22 Diesel Range	435	20
Hydraulic Range	MD	10

ND = Not detected at the specified limits

000122

THA Inc.

REPORT

Work Order # A2-05-014

Received: 05/04/92

Results by Sample

SAMPLE ID <u>806D37</u> FRACTION <u>03E</u> TEST CODE <u>8TEX</u> NAME <u>BTEX by EPA 8020 (WN196)</u>

Date 4 Time Collected <u>04/29/92</u> Category _____

BTEX by EPA Method 8020

Matrix: Soil

Date Analyzed: 5/8/92 Dilution factor: 1000

Concentration Units: _____ug/Kg

CAS No.	Compound	Sample Result	PQL
71-43-2	Benzene	MD	500
108-88-3	Toluene	4,700	500
100-41-4	Ethylbenzene	MD	500
1330-20-7	Xylenes (Total)	ND	500

% Recovery Surrogate Compound

Bromofluorobenzene 104

ND = Not detected at the specified limits

000090

THA Inc.

REPORT

Work Order # A2-05-014

Received: 05/04/92

Results by Sample

SAMPLE ID BO6037

FRACTION 038 TEST CODE 8015W NAME Volatile Fuels-TPM
Date & Time Collected 04/29/92 Category _____

MODIFIED 8015 - VOLATILE FUEL HYDROCARBONS

Matrix: Soil

Date Analyzed: 05/11/92
Dilution factor: 1000.00
Concentration Units: ug/Kg

Compound	Sample Result	PQL
C5 - C12 Gasoline Range	ND	5000

ND = Not detected at the specified limits

THA Inc.

REPORT

Work Order # A2-05-014

Received: 05/04/92

Results by Sample

SAMPLE ID BO6D37

FRACTION 03A TEST CODE 8015NS NAME EPA 8015N EXTRACT. (VM195)
Date & Time Collected 04/29/92 Category ______

MODIFIED 8015 - EXTRACTABLE FUEL NYDROCARBONS

Matrix: Soil

Date Analyzed: 05/12/92
Dilution factor: 2.00
Concentration Units: mg/Kg

Compound	Sample Result	PQL
Kerosene Range	3085	10
C10 - C16 Jet fuel Range	MD	10
C9 - C22 Diesel Range	1000	20
Hydraulic Range	MD	10

ND = Not detected at the specified limits

form 1

.. 🥱

100-N GAS STATION "LUST" September 9, 1992

SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-3047

Report To: Westinghouse Hanford Date: September 22, 1992

Report On: Analysis of Soils & Solids Lab No.: 27160 Page 1 of 7

IDENTIFICATION:

Samples received on 09-16-92

Project: 100 N Gas Station "LUST"

ANALYSIS:

🕶 🛂 og en gjenske koloni

Lab No. 27160-1

Client ID: B076C4 (soil)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-18-92

Gasoline, mg/kg

< 1.0

(C7 · C12)

Benzene, mg/kg < 0.05 Toluene, mg/kg < 0.05 Ethyl Benzene, mg/kg < 0.05 Xylenes, mg/kg < 0.05

SURROGATE RECOVERY, &

Trifluorotoluene

85

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 · C24)

SURROGATE RECOVERY, &

0-Terphenyl

75

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg (C24+)

<.100

ICP Metals Per Method 6010 Date Digested: 9-18-92

Date Analyzed: 9-18-92

Lead, mg/kg

1.9

D-261

SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 2 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-2

Client ID: B076C5 (soil)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-18-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

Benzene, mg/kg < 0.05
Toluene, mg/kg < 0.05
Ethyl Benzene, mg/kg < 0.05
Xylenes, mg/kg < 0.05

SURROGATE RECOVERY, &

Trifluorotoluene

87

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 - C24)

SURROGATE RECOVERY, \$

O-Terphenyl

61

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg

< 100

(C24+)

ICP Metals Per Method 6010 Date Digested: 9-18-92 Date Analyzed: 9-18-92

Lead, mg/kg

1.3

WHC-SD-EN-TI-136, Rev. 6 SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 4 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-4

Client ID: B076C6 (soil)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-18-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

Benzene, mg/kg < 0.05 Toluene, mg/kg < 0.05 Ethyl Benzene, mg/kg < 0.05 Xylenes, mg/kg < 0.05

SURROGATE RECOVERY, \$

Trifluorotoluene

72

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 - C24)

SURROGATE RECOVERY, &

O-Terphenyl

60

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg (C24+)

< 100

ICP Metals Per Method 6010 Date Digested: 9-18-92 Date Analyzed: 9-18-92

Lead, mg/kg

2.6

SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 3 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-3

Client ID: B076C7 (solid)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-18-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

Benzene, mg/kg < 0.05
Toluene, mg/kg < 0.05
Ethyl Benzene, mg/kg < 0.05
Xylenes, mg/kg < 0.05

SURROGATE RECOVERY. &

Trifluorotoluene

68

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 - C24)

SURROGATE RECOVERY, &

O-Terphenyl

66

WTPH-418.1 Modified
Date Extracted: 9-18-92
Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg

< 100

(C24+)

ICP Metals Per Method 6010 Date Digested: 9-18-92 Date Analyzed: 9-18-92

Lead, mg/kg

< 1.1

SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 5 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-5

Client ID: B076C8 (solid)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-19-92

Gasoline, mg/kg

< 1.0

(C7 · C12)

< 0.05 Benzene, mg/kg < 0.05 Toluene, mg/kg < 0.05 Ethyl Benzene, mg/kg

Xylenes, mg/kg

< 0.05

SURROGATE RECOVERY, &

Trifluorotoluene

65

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 - C24)

SURROGATE RECOVERY, \$

O-Terphenyl

66

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg

< 100

(C24+)

ICP Metals Per Method 6010 Date Digested: 9-18-962 Date Analyzed: 9-18-92

Lead, mg/kg

< 1.0

SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 6 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-6

HEL CO OF THE OFICE

B076C9 (solid) Client ID:

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-19-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

< 0.05 Benzene, mg/kg < 0.05 Toluene, mg/kg < 0.05 Ethyl Benzene, mg/kg < 0.05 Xylenes, mg/kg

SURROGATE RECOVERY, &

Trifluorotoluene

73

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 · C24)

SURROGATE RECOVERY, &

O-Terphenyl

71

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg (C24+)

< 100

ICP Metals Per Method 6010 Date Digested: 9-18-92

Date Analyzed: 9-18-92

Lead, mg/kg

< 0.69

Continued

and supplement This ishoralors exemple only for the original exemple some states in accordance of the description of the manual contract of the second of th

SOUND ANALYTICAL SERVICES, INC.

Westinghouse Hanford Project: 100 N Gas Station "LUST" Page 7 of 7 Lab No. 27160 September 22, 1992

Lab No. 27160-7

4-4

Client ID: B076D0 (soil)

WTPH-G with BTEX by Method 8020 Date Extracted: 9-17-92 Date Analyzed: 9-19-92

< 1.0 Gasoline, mg/kg (C7 - C12) < 0.05 Benzene, mg/kg

< 0.05 Toluene, mg/kg < 0.05 Ethyl Benzene, mg/kg < 0.05 Xylenes, mg/kg

SURROGATE RECOVERY, &

Trifluorotoluene

70

WTPH-D

Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Diesel, mg/kg

< 25

(> C12 - C24)

SURROGATE RECOVERY, \$

O-Terphenyl

59

WTPH-418.1 Modified Date Extracted: 9-18-92 Date Analyzed: 9-21-92

Heavy petroleum oils, mg/kg (C24+)

< 100

ICP Metals Per Method 6010 Date Digested: 9-18-92 Date Analyzed: 9-18-92

Lead, mg/kg

2.7

SOUND ANALYTICAL SERVICES

MARTY FRENCH

D-267